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Chapter 1

Introduction

1.1 Motivation

The Petri net formalism has proven its usefulness in modeling discrete-state systems that
move between states in discrete or continuous time and that may be characterized as se-
quential or concurrent, synchronous or asynchronous, deterministic or stochastic, or any
combination for that matter. Through higher levels of abstraction, a Petri net (PN) permits
a compact speci�cation of the underlying mathematical model (usually a stochastic process)
that is amenable to computer analysis. But applying PN modeling to arbitrarily complex
systems requires the solution of diÆcult problems from a computational point of view.

A common problem is the computational complexity often required to solve stochas-
tic PN (SPN) models with realistic assumptions about the logical and timed behavior, as
opposed to simple behavior that restricts the applicability to toy models. SPNs are most
easily solved when �ring delays of transitions are either exponentially or geometrically dis-
tributed. Then, the underlying stochastic process is a continuous-time Markov chain in the
former and a discrete-time Markov chain in the latter. EÆcient solution techniques for such
Markov chains are well known. However, such modeling assumptions may be unrealistic for
many systems, leading to inaccurate results when adopted.

A more general approach is to allow the transition �ring delays to have general dis-
tributions. In their full generality, such SPNs are classi�ed as non-Markovian and specify
generalized semi-Markov processes. Unfortunately, in the absence of any restrictions the
study of such nets by analytical or numerical means is so computationally expensive that
simulation becomes the only practical means to a solution. With some conveniently-chosen
restrictions, however, the solution to the model can be made eÆcient in some cases while
still lending itself to useful applications. The investigation of eÆcient exact and approximate
solutions to such classes of non-Markovian PNs is the focus of our research.

Much of our research �nds its foundation in the early work of Molloy [1], Bobbio and
Cumani [2], and Marsan et al. [3, 4]: Molloy introducing execution policies, the combination
of deterministic and discrete-time random behavior, and the expansion of phase-type �ring
delays at the state-space level, and Bobbio, Marsan, et al. doing the same for continuous
time. Complete speci�cations of the semantics of a stochastic Petri net requires consideration
about how (and in what order) enabled transitions are selected to �re and what happens
to the remaining �ring time of other enabled transitions when another transition �res. An
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execution policy formally de�nes such semantics by specifying the policy used to select the
enabled transition that �res and the way memory is kept of the past history of the net [4].

In [1], Molloy provided a comprehensive overview of the SPN semantics and behavior as a
function of the execution policies. He also showed that when the probability distributions of
SPN transitions are discrete phase-type, an otherwise non-Markovian underlying process can
be transformed into a homogeneous discrete-time Markov chain de�ned over an expanded
state space. Particularly relevant to this work is that Molloy showed how transitions with
deterministic �ring delays can be combined with geometric �ring-delay transitions with the
restriction that the deterministic delays are equal to the basic step of the geometric distri-
butions. These ideas were brought up-to-date by Ciardo [5] while introducing the discrete
deterministic and stochastic PN (DDSPN) formalism that allows �ring delays with discrete
phase-type distributions, all sharing a basic step, and having an underlying discrete-time
Markov chain. The notion of a \basic step" is important to our proposed research as well.
The basic step period, denoted by � , is de�ned as the sojourn time in each state of the
underlying discrete-time Markov chain.

In [3], Marsan and Chiola introduced the deterministic and stochastic PN (DSPN), and
marks the �rst time deterministic behavior was integrated with continuous-time random
behavior. Bobbio and Cumani in [2] showed how continuous-time, phase-type �ring delays
can be expanded at the state-space level to form a continuous-time Markov chain. This was
discussed again by Marsan et al. in [4] while providing an extensive discussion of execution
policies for generally distributed �ring delays.

1.2 Objective

Our research involves the formal development of a new class of non-Markovian SPNs based on
phase-type �ring delays in both discrete and continuous time, present simultaneously in the
same model. We build upon the extended SPN formalism, one that includes constructs that
increase its modeling power, from a logical point of view, to that of a Turing machine as well
as features that provide modeling conveniences. Such modern extensions include inhibitor
arcs, transition priorities, transition-enabling guards, marking-dependent arc multiplicities,
and marking-dependent execution policies.

When possible, eÆcient and exact solution algorithms will be developed with certain
restrictions; otherwise, approximate solution algorithms will be investigated. In this way,
we anticipate that this new SPN formalism may also prove to be useful in many modeling
problems while still a�ording an eÆcient solution.

1.3 Organization and Assumptions

Relevant background material is provided in Chapter 2, which provides the foundation for our
chosen approach. Topics include discrete- and continuous-time Markov chains, semi-Markov
chains, semi-regenerative processes, generalized semi-Markov processes, characteristics spe-
ci�c to each, and known solution methods. These are the classes of underlying stochastic
processes for popular SPN formalisms used today, and the classi�cation of these formalisms
is closely related to the stochastic process which they can specify. The generality and so-
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lution complexity associated with these stochastic processes determine the modeling power
and eÆciency, and therefore, the SPN's applicability and practical usefulness. Therefore,
by also discussing the complexity issues germane to the solution methods, the background
chapter also serves to motivate the proposed approach towards our objective: developing
a SPN formalism that lends itself to useful modeling applications and eÆcient numerical
analysis.

Chapter 3 provides an outline of the proposed research. Preliminary research results are
provided in Chapter 4, which includes the formalization of the new SPN class and analysis
theory, culminating into an exact, stationary solution algorithm. Time-dependent analysis
is shown to be diÆcult except for a special case, making a strong argument for approximate
solutions, which is planned for later. The chapter ends with a comparative analysis of
the new SPN formalism with other noteworthy extensions in terms of modeling power and
solution complexity. The preliminary results are followed by the plan towards completing
the research in Chapter 5.

1.4 Notation

For the de�nitions and methods that follow, we restrict ourselves to homogeneous (time
invariant) models, and we assume that a race execution policy is employed; that is, the
transition with the earliest �ring time is selected to �re next. Nevertheless, a preselection
execution policy can be modeled by our formalism since a mechanism to resolve \contem-
porary" events is still required. We assume that transition �ring events are atomic (no time
elapses) and always sequential even if the �ring times are contemporary. From a modeling
perspective, contemporary �rings still occur at the same time. It is only that we choose to
impose a sequential ordering policy so that new markings can be unambiguously determined.
As for timing, we may sometimes allow the probability distribution functions associated with
transition �rings to be marking dependent.

Sets are denoted with calligraphic letters. Vectors and matrices (usually lower and
upper case letters, respectively) are denoted with bold text and the corresponding elements
are denoted with (usually subscripted) plain text. The notion of \state" for the models and
stochastic processes presented herein is actually a vector, dimensioned on the set of natural
numbers N and sometimes paired with supplementary information, also vectors dimensioned
on N or the set of real numbers R. But our model solutions take the form of probability
distribution vectors that either provide the state-occupancy probabilities at certain times
or at steady state, or provide cumulative probabilities of occupying states over intervals of
time. In either case, each (vector) state i 2 Nn must be mapped to some index i 2 N that
is associated with the state's lexicographic position in the solution vector p = [pi] 2 R

jSj

on the complete set of states S, also known as the state space. When we refer to state \i"
in bold text, we mean its vector form, and when we refer to state \i" in plain text, we are
referring to its lexicographic index, unless otherwise stated.

6



Chapter 2

Background

2.1 Petri Nets

A Petri net, such as the one pictured in Figure 2.1, is a directed bipartite graph described by
the tuple PN = (P; T ; A; A�; A+; AÆ; g; �; m0 ) with �nite vertex sets P (places) and T
(transitions) and a �nite set of arcs (drawn as directed line segments), A � P �T [T �P.
Places (drawn as circles) can contain an integer number of tokens (drawn as dots or denoted
by a number inside the place). We denote the marking of the net by a row vector m 2 N jPj

that contains as entries the number of tokens in each place. Hence, mp denotes the number
of tokens in place p of marking m = [m1; m2; : : : ; mjPj ]. The vector m0 denotes the initial
marking.

Markings can be altered when enabling rules are satis�ed at transitions (drawn as rectan-
gles), permitting one or more transitions to �re, thereby removing tokens from input places
and depositing them to output places according to the connecting arc multiplicities. Arc
multiplicities are de�ned on arcs as either nonnegative integer constants or marking depen-
dent functions that return a nonnegative integer; the semantics depend on the type of arc.
For input arcs, the multiplicity, denoted by A�

tp(m), speci�es the minimum number of to-
kens needed in place p before transition t can become enabled in marking m; this number
of tokens is then removed if the transition is indeed chosen to �re. Special input arcs, called
inhibitor arcs (drawn as directed lines with a circle at the end instead of an arrow), have
a complementary e�ect on the enabling of transitions. For inhibitor arcs, the multiplicity,
denoted by AÆ

tp(m), is the minimum number of tokens needed in place p to disable transition
t in marking m. For output arcs, the multiplicity, denoted by A+

tp(m), speci�es the number
of tokens that will be deposited in place p when transition t �res in marking m.

Guards, denoted by g and de�ned for transitions, are functions N jPj ! f true; false g that
conveniently specify additional �ring rules on transitions. Given some marking m, gt(m)
must return true to enable transition t.

The PN component �� T �T speci�es an acyclic, preselection, priority relation, which
can resolve con
icts between competing transitions attempting to �re.

Either inhibitor arcs, guards, priorities, or marking-dependent multiplicities alone in-
creases the modeling power of a PN to that of a Turing machine (so we can represent any
computational model), and hence are referred to as Turing extensions [6, 7]. Including all
four Turing extensions merely provides additional modeling conveniences since the modeling
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t4
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Figure 2.1: Example Petri net model.

power can no longer increase.
A transition t 2 F(m), the set of enabled transitions in markingm, if all of the following

hold:

1. gt(m) = true

2. all of its input places p contain at least as many tokens as the corresponding input arc
multiplicity A�

tp(m):

8p 2 P; mp � A�
tp(m)

3. all of its inhibitor arc places p contain fewer tokens than the arc multiplicity AÆ
tp(m):

8p 2 P; mp < AÆ
tp(m)

4. no other transition with higher priority � is enabled:

8u 2 T ; u 6� t or u =2 F(m)

The �ring of a transition is assumed to be atomic, consuming zero time. And, timing
constraints aside, the PN de�ned above can evolve through markings originating from the
initial marking by �ring enabled transitions in any order. A transition t 2 F(m0) can �re

thereby changing the marking,m0
t
�! m1, wherem1 is obtained by consuming tokens from

input places and depositing tokens to output places according to the input and output arc
multiplicities A�

t� and A+
t�, respectively. By treating the A�

t� and A+
t� as vectors, we can write

an equation for the next marking as

m1 =m0 + A+
t �(m0)� A�

t �(m0)

=m0 + 1tA(m0)
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where A(m) = A+(m)�A�(m) is called the incidence matrix and 1t is a unit vector with
a 1 at the tth position and 0 everywhere else. It is convenient to extend this next-marking
computation to one that takes a sequence s 2 T � of transition �rings as input, where T �

denotes the set of transition sequences obtained by concatenating zero or more transitions
from T . We do this by de�ning the next-marking function M : T ��N jPj ! N

jPj to operate
on a transition �ring sequence s = ( t1; t2; : : : ; tn ) 2 T n and a markingm and return a new
marking. With � = ( ) denoting the null sequence, the next marking function M is de�ned
recursively as

M( �;m ) =m;

M( (t1; t2; : : : ; tn);m ) = M( (t2; : : : ; tn);m+ 1t1A(m) ) if t1 2 F(m),

and is unde�ned otherwise.
The PN behavior characterized by the set of markings reachable from the initial marking

and the transition �rings that cause the net to enter one marking from another can be repre-
sented as a directed graph with vertices corresponding to markings and arcs corresponding
to the �ring of transitions, completely constructed using M . Such a graph is called the
reachability graph. The reachability set, R, the set of reachability graph vertices, is the set
of all markings reachable by a sequence of transition �rings starting from the initial marking
m0:

R = fm : 9 s 2 T �;m = M(s; m0) g

The reachability graph of the example PN model is portrayed in Figure 2.2 assuming
for the moment that the net is untimed. The possible state space is subject to the number
of tokens that can reside in each place p1; p2; : : : ; p6 and the possible sequence of transition
�rings that move the net between markings starting from the initial marking (m1m2 : : :m6) =
(111000). Without timing constraints, transitions t1; t2, and t3 are concurrent with each
other and each can �re asynchronously. However, synchronization is imposed after these
three transitions �re before transition t4 can become enabled and �re, returning the net to
the initial marking. Because all transitions have a fair chance of �ring, the reachability graph
contains all possible markings and all possible transition �ring sequences.

Petri nets as de�ned are useful in the study of many types of systems, with or without
concurrency, with or without synchronization. But without the inclusion of time, we are
limited to the qualitative analysis of properties like liveness, deadlock, boundedness, and
invariants [8]. To broaden the applicability of PNs, the notion of time has been incorpo-
rated into the Petri net by various researchers with various generalities by requiring that
an enabled transition delay some amount of time before �ring. Ultimately, the speci�cation
captured by the Petri net must be transformed into an (underlying) mathematical model
that can be solved to obtain quantitative measures. When the �ring delays are speci�ed as
random variables (or even if deterministic but contemporary transition �rings are allowed),
the underlying model is a stochastic process, the solution of which governs the overall com-
plexity of the model solution. As one would expect, the tractability of the solution decreases
as the generality of the model increases.

Extended Petri nets with the most convenient stochastic models include those with ge-
ometrically distributed (Geom) �ring delays [1] having an underlying discrete-time Markov
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Figure 2.2: Reachability graph of example PN model.

chain and those with exponentially distributed (Expo) �ring delays [9] having an underly-
ing continuous-time Markov chain. These Markovian extensions have proven useful in the
years for studying discrete-event systems with random behavior. But with the usefulness
of these models to more complex and realistic systems in question, more recent extensions
have tried to incorporate non-Markovian behavior. Noteworthy extensions and associated
underlying processes are the phase-type SPN with an underlying, expanded continuous-time
Markov chain [2], the extended SPN (ESPN) [10] with an underlying semi-Markov chain, the
deterministic and stochastic PN (DSPN) [3] and the Markov regenerative SPN (MRSPN)
[11, 12, 13] with an underlying semi-regenerative process, and the discrete deterministic
and stochastic PN (DDSPN) [5] with an underlying, expanded discrete-time Markov chain.
However, the complexity of solving more general underlying stochastic processes oftentimes
limits in practice their usefulness to problems with small dimensions.

Consider now the SPN where the states reachable from the initial state are subject to the
possible state transitions under the constraints imposed by the timed execution. Sometimes
the reachability graph of the PN is isomorphic to the underlying stochastic process that
models its timed execution. It is important to know when this property holds because it
determines when and how the reachability graph of markings and the underlying stochastic
(marking) process can be constructed. When they are isomorphic, there is a one-to-one
correspondence between states in the reachability set R and the state space of the stochastic
process, denoted by S. This is the case for SPNs with Geom or Expo �ring delays, which have
underlying Markov chains. In such cases, it may be convenient to build the reachability graph
�rst and then construct the (matrix) equations for the stochastic process from it second [14].
Also when they are isomorphic, one may wish to perform the qualitative analysis by operating
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on the incidence matrix or reachability graph separately from studying the stochastic marking
process [8]. If we know that isomorphism is not guaranteed or does not exist, then S may
be a strict subset of R. Consequently, the results from reasoning about the reachability set
R independently from the timing speci�cation is less meaningful, and possibly misleading.

The semantics of a SPN model also depends on the chosen execution policy. The exe-
cution policy speci�es two things: 1) how the next transition to �re is selected among those
enabled and 2) how memory is kept regarding the remaining �ring time (RFT), or similarly
the \age", of transitions with non-memoryless distributions.

In regard to selecting transitions to �re, the policy most frequently assumed is the race
policy where the transition selected to �re is the one with the minimum remaining �ring time
over all enabled transitions. But it is also possible to perform the selection on the basis of
additional speci�cations that do not depend on the duration of the activities associated with
the transitions that are enabled. One such policy is called preselection where transitions are
selected to �re among the enabled set according to a priori information, independent of the
�ring delay distributions. For example, a probability mass function (pmf) can be de�ned
over the set of enabled transitions in a given marking, and used to choose the transition that
�res next. This preselection can be done globally, de�ned for all markings of the net, which
implies serialization of all activities. Alternatively, the preselection can be done locally,
de�ned over transition groupings, not necessarily disjoint, within which a preselection policy
is applied. Local preselection can be done in concert with the race policy as follows. In
a marking that enables transitions belonging to these groups, the next transition to �re is
identi�ed by selecting �rst, with time independent criteria, an enabled transition (if one
exists) from each of the groups, and then by choosing among the preselected transitions the
one whose �ring delay is minimal [4].

We allow a combination of race policy with pre- and post-selection in terms of priorities.
Under the race policy, we select among the enabled transition whose sampled �ring delay is
(statistically) the shortest. This policy provides very useful models of systems that exhibit
concurrency where multiple activities compete such that the �rst to �nish determines the
change in system state. We assume that immediate transitions, those that �re in zero
time, have a higher priority of �ring over timed transitions. Thus, we implicitly employ a
preselection policy between timed and immediate transitions. Other execution policies like
pre- or post-selection among timed transitions are discussed at length in [4] and may be
required as well to resolve confusion, which is discussed later.

In regard to how memory is kept about the age, or RFT, of transitions, the memory
policy is only meaningful for transitions with non-memoryless �ring-delay distributions since
these are the only transition that can \age". Transitions that have memoryless distributions
(the Expo in continuous time and the Geom in discrete time, the Const(0) is a special case
of the Geom) are not a�ected since their �ring delays can equivalently be sampled after
every transition �ring. Memory policies are as important to the semantics of non-Markovian
SPNs as the net topology and the policy used to select the next transition to �re. There are
three policies that are most-frequently used in modeling applications, namely, resampling,
enabling memory, and age memory [1, 4]. The chosen memory policy need not be global; a
di�erent policy can be associated with di�erent transitions and be marking dependent [15].
A resampling policy requires that transitions obtain a new �ring delay, sampled from the
respective distribution functions, after some transition �res, including itself. Since each
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transition �ring causes a state change, a resampling policy for all transitions results in a
semi-Markov process, which enjoys an absence of memory after each state change. Such a
policy (with race execution) is useful for modeling competing activities (modeled of course by
transitions where the amount of work performed is represented by the �ring delay) in which
the next state of the system is decided by the activity that �nishes �rst. Consequently, the
work performed by the losing transitions is lost. Alternatively, an enabling-memory policy
causes the �ring delays to be resampled only when a transition becomes enabled again
after being disabled. The enabling memory policy is useful in modeling activities where
work is performed until either completion or termination by another event causing the work
performed to be lost. Finally, the age-memory policy causes the �ring delay to be resampled
only after the transition itself �res, even though it may have been disabled and re-enabled
many times. Thus, the work performed by age-memory activities is never lost, which makes
such transitions useful in modeling tasks that can be preempted and then resumed at the
same point.

2.2 Markov Models

When the SPN �ring delays are de�ned by random variables, the SPN provides a compact
speci�cation of an underlying stochastic process. Hereafter, we will denote this stochastic
process as fX(�) : � � 0 g: a collection of random variables de�ned over the same probability
space, indexed by a time parameter �, and taking on values in a state space S, which may
be �nite or in�nite as well as continuous or discrete. A stochastic process that has a discrete
state space is called a chain. The index (time) parameter � can also be continuous or discrete.
Hereafter, we will denote discrete-time processes by fX� : � 2 N g.

A stochastic process (chain) fX(�) : � � 0g with the property

PrfX(� + �) = j jX(�) = i; X(�) = x(�); 0 � � < � g =

PrfX(� + �) = j jX(�) = i g

8 i; j; x(�) 2 S, � � 0, � � 0, is called a Markov process (chain) and the property is referred
to as the \memoryless" orMarkov property. Thus, the determination of the state the process
will transition to next depends solely on the current state and not the past history of the
process. When the value of that conditional probability is independent of �, the process
is said to be homogeneous or time invariant; this is one of our assumptions. Also, because
of the discrete nature of the PN markings, we will mostly concern ourselves with discrete-
state processes or chains. The acronyms DTMC and CTMC are used for discrete-time and
continuous-time Markov chains, respectively. There will be occasions, presented later, when
the \state" is supplemented with additional, continuous-valued information for modeling
purposes thereby giving rise to a continuous-state process.

The amount of time that a process spends in a state is referred to as its sojourn time.
Clearly, if the evolution of a Markov process depends only on the current state, it should
not matter how long the process remains in the current state before making a transition.
Thus, the sojourn time is geometrically distributed (Geom) for DTMCs and exponentially
distributed (Expo) for CTMCs. This is expected since the Geom and Expo random variables
are the only ones that exhibit the \memoryless property" for discrete and continuous random
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variables, respectively. Without limiting ourselves to only Expo and Geom �ring delays, the
eÆcient analysis of SPNs using DTMCs and CTMCs will be the main focus of our research.

It follows from the memoryless property of Markov chains, letting

Pij(�) = PrfX(�) = j jX(0) = i g;

that

Pij(� + �) =
X
k2S

Pik(�)Pkj(�):

This is known as the Chapman-Kolmogorov equation for Markov chains and is key in for-
mulating the analytical solutions of Markovian models.

2.2.1 Discrete-Time Markov Chains

Consider a DTMC de�ned by its transition matrix � = [�ij], i; j 2 S, where

�ij = PrfX1 = j jX0 = i g

gives the conditional transition probabilities between states in one step or jump. It is often
the case with DTMC models that the time spent in each state is of no concern, only the
states that can be occupied after a given number of \jumps" is of interest. But we can also
imagine that the DTMC remains in each state a �xed amount of time � , referred to as its
basic step time.

A fundamental property of DTMCs is that the Chapman-Kolmogorov equation takes
the form

Pij(�) =
h
��

i
ij

where � 2 N . However, we do not have to, nor would we want to, compute the matrix ��.
Instead, we can compute the unconditional probability vector

x(�) = [PrfX� = i g] = x(0)��

iteratively using the recursive relation

x(�) = x(��1)�

known as the power method where x(0) = [PrfX0 = i g] 2 RjSj is given by the initial proba-
bility distribution.

We can also compute the cumulative probability vector y(�) =
h
y
(�)
j

i
=
R �
0 x

(buc) du,
de�ned as

y
(�)
j = E[ number of visits to j 2 S until time � jX0 = i ]

with an extended power method:

y(n) = y(n�1) + x(n�1)

x(n) = x(n�1)�
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for n 1 to � with initial condition y(0) = 0 (the vector of all zeros).
If the DTMC contains transient states that lead to strongly-connected recurrent states

(including absorbing states), then we can partition the state space into ST and SR, the set of
transient and recurrent states, respectively, such that S = ST [SR. Then, by de�ning a new
matrix ~� by restricting� to states in ST only, we can compute the cumulative probability
vector ~y = [~yj] 2 R

jST j de�ned as

~yj = lim
�!1

y
(�)
j = E[ number of visits to j 2 ST until absorption jX0 = i ]

with the same extended power method except that matrix ~� is used instead of�, ~x 2 RjST j

is used, and we stop when probability mass remaining in ST , determined from the vector
norm k ~xk1, becomes small enough.

The power method can also be used to compute the stationary or steady-state solution
x = [xi], i 2 S, of DTMCs where xi = lim�!1 PrfX� = i g, by iterating long enough for the

sequence
n
x(n)

o1
n=0

to converge to x.

For the limiting measures where � ! 1, convergence utilizing the power method may
take a long time, making for a poor method in practice. Alternatively, we can observe
that a stationary solution x, if it exists, would satisfy the equation x� = x. This is just
the case for ergodic DTMCs (those that are irreducible, aperiodic, and positive recurrent).
Fortunately, ergodic DTMCs have a unique stationary solution that satis�es the system of
equations

x� = x subject to
X
i2S

xi = 1: (2.1)

Of course, we could utilize direct methods like standard Gaussian elimination or LU decom-
position to solve for x. But because the coeÆcient matrix based on � would be modi�ed
and susceptible to �ll-in and because � is typically very large for realistic models, direct
methods are rarely used in practice. Even though the DTMC speci�ed by � (and most any
stochastic model for that matter) is large, it is at least sparse in general. So iterative methods
like Gauss-Seidel and successive overrelaxation (SOR), which have much faster convergence
than the iterative power method, are usually employed to compute x. These methods do
not modify the iteration matrix based on � and if sparse matrix storage is used, the time
complexity is O(N�) where N is the number of iterations needed for convergence and � is
the number of nonzero entries in matrix �. Unfortunately, N may be unbounded since
these iterative methods do not guarantee convergence for all initial guesses for x. This is
because � is a stochastic matrix (each row sum is one), which makes the spectral radius
(the largest eigenvalue) equal to one. Iterative methods have guaranteed convergence for
any initial guess only when the spectral radius is less than one [16].

With these iterative methods, we can also solve the following system of linear equations
for the cumulative probability vector ~y when S contains transient states:

~y = ~x(0) + ~y ~�

or equivalently

~y(I� ~�) = ~x(0): (2.2)
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While the use of iterative methods to solve Equation 2.1 may not converge for all initial
guesses, convergence is instead guaranteed for Equation 2.2, since (I� ~�) is an M-matrix,
(nonsingular, elements are less than or equal to zero, and having a nonnegative inverse [16]),
which always has a spectral radius less than one. Therefore, solving Equation 2.2 with
iterative methods has guaranteed convergence, regardless of the initial guess [17].

2.2.2 Continuous-Time Markov Chains

Consider now a CTMC, where for all continuous points in time, state transitions can occur
and the process is memoryless. Let the rate at which the process transitions from state i to
state j be denoted by �ij 2 R+ , i; j 2 S. The sojourn time in each state i is exponentially
distributed, so by letting �i =

P
j2S �ij, we can obtain the expected sojourn time from

E[ sojourn time in state i ] = ��1i :

The interpretation of the rates is such that

lim
�!0

Pij(�)

�
= �ij; i 6= j (2.3)

lim
�!0

1� Pii(�)

�
= �i: (2.4)

By observing the CTMC just after each state transition, we can construct a DTMC
consisting of the possible sequence of states the process can move between over time �. If
only limiting measures where � !1 are sought then we can also compute the probability of
transitioning between state i and state j in the DTMC from the ratio �ij=�i since the sojourn
times are exponentially distributed. Let diag(�ii) be matrix with �i along the diagonal 8i 2 S
and zero elsewhere. Then the embedded DTMC matrix � 2 RjSj�jSj constructed from the
CTMC is de�ned as

� = diag(�i)
�1[�ij]i6=j (2.5)

Constructing a DTMC by observing a stochastic process (a CTMC in this case) at times
when the Markov property holds is called embedding. Then steady-state, state-occupancy
measures such as the stationary distribution or time-to-absorption (TTA) can be computed
from the embedded DTMC (EMC) using Equations 2.1 and 2.2, respectively. But, since the
quantities x and y from Equations 2.1 and 2.2 for the EMC are interpreted as or are based on
the \number of visits" to states, we must convert these measures back to the original CTMC
by appropriately scaling them. The needed \scaling factors" come from the knowledge that,
with each visit, the expected sojourn time in each state i is just ��1i . For example, the
CTMC stationary distribution p = [pi], pi = lim�!1 PrfX(�) = i g, can be computed by
using the embedded DTMC matrix (2.5) and then computing

x� = x subject to
X
i2S

xi = 1; ~xi = xi �
�1
i ; pj =

~xjP
k2S

~xk

where the last step is needed to re-normalize the distribution so that it sums to one once
again.

15



Embedding a CTMC is applicable for steady-state solutions, not time-dependent solu-
tions. With simple embedding, the CTMC is observed only at times when state transitions
occur. Consequently, information concerning how long the process sojourns in states is lost
making the EMC time-dependent solutions useless. For time-dependent analysis, we must
once again make use of the Chapman-Kolmogorov equation. For steady-state analysis, em-
bedding will once again be useful for more complicated stochastic process than CTMCs, as
discussed in more detail in later sections.

By manipulating the Chapman-Kolmogorov equation:

Pij(� + �) =
X
k2S

Pik(�)Pkj(�)

Pij(� + �)� Pij(�) =
X
k2S

Pik(�)Pkj(�)� Pij(�)

Pij(� + �)� Pij(�) =
X
k 6=i

Pik(�)Pkj(�)� (1� Pjj(�))Pij(�)

then dividing by � and taking the limit as � ! 0:

lim
�!0

Pij(� + �)� Pij(�)

�
= lim

�!0

(P
k 6=i Pik(�)Pkj(�)� (1� Pjj(�))Pij(�)

�

)

and �nally substituting 2.3 and 2.4, we get what is known as Kolmogorov's forward equation:

d

d�
Pij(�) =

X
k 6=i

Pik(�)�kj � Pij(�)�j: (2.6)

The interchange of the summation and the limit, needed to obtain Equation 2.6, is not
always justi�ed, but it does hold for most models including those with �nite state spaces, as
is the case here [18]. Similarly, we can derive the Kolmogorov's backward equation,

d

d�
Pij(�) =

X
k 6=i

�ikPkj(�)� �iPij(�); (2.7)

by looking backwards in time from a given state.
By de�ning what is called the in�nitesimal generator matrix, Q = [Qij] 2 RjSj�jSj, as

Q = [�ij]i6=j � diag(�i)

and letting P (�) = [Pij(�)] 2 R
jSj�jSj, Kolmogorov's forward and backward equations can

be rewritten in matrix form as

d

d�
P (�) = P (�)Q (2.8)

and

d

d�
P (�) = QP (�) (2.9)
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respectively. These di�erential equations can sometimes be solved with conventional, di-
rect or indirect means (such as Runge-Kutta or Laplace transforms) but this restricts the
usefulness of CTMC models to small problems. Instead, we could make use of the known
solution

P (�) = eQ�;

which is a matrix exponential computed from

eQ� =
1X
n=0

(Q�)n

n!
: (2.10)

However, the matrix exponential method is susceptible to subtractive cancellation errors due
to the positive and negative entries in Q, which makes the method unstable.

In practice, the time-dependent solution of the CTMC is usually computed using Jensen's
method, also known as uniformization. The basic idea behind uniformization is to perform
time-dependent analysis on a DTMC constructed from the CTMC in a way similar to \em-
bedding" except that all states are forced to have the same expected sojourn time by imposing
sel
oops on states where necessary. By uniformizing the CTMC, the CTMC is observed at
times of state transitions, when they occur naturally, and at more frequent times, when
self-transitions occur. Hence, information is retained about how long the CTMC occupies
each state, unlike the embedding method.

The basic uniformization algorithm de�nes a DTMC matrix, A 2 RjSj�jSj, as

A = q�1Q+ I (2.11)

where q � maxiQii is chosen as the \sampling" rate, at least as large as the maximum
outgoing rate of all CTMC states. The sampling rate q is normally chosen to be slightly
larger than the maximum outgoing rate to ensure that the DTMC will not be periodic. Also,
all A entries are non-negative. So, substituting

Q = (A� I) q;

derived from 2.11, into the matrix exponential 2.10 provides an eÆcient and much more stable
computation of P (�), for a given initial probability distribution x(0) = [PrfX0 = i g] 2 RjSj ,
that makes use of the Poisson random variable:

x(0)P (�) = x(0)eQ�

= x(0)e(A�I)q�

= x(0)eAq�e�Iq�

= x(0)
1X
n=0

An(q�)n

n!
�
1X
n=0

In(�q�)n

n!

= x(0)
1X
n=0

An(q�)n

n!
�
1X
n=0

(�q�)n

n!

= x(0)
1X
n=0

(q�)ne�q�

n!
An:
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The summation can be easily computed with

1X
n=0

x(n)Poiss(n; q�) (2.12)

where

x(n) = x(n�1)A

and

Poiss(n; q�) = Poiss(n� 1; q�)
q�

n
; Poiss(0; q�) = e�q�:

So we see that uniformization is another version of the power method, only extended
for suitability in studying CTMCs. Essentially, uniformization subordinates the uniformized
process with a Poisson birth process. This has a nice interpretation. The Poisson process
determines the probability that the uniformized process (the DTMC) can make n jumps
within �xed time �. Given n jumps, An determines the set of states that can be occupied
conditioned on the initial state. By doing this for all possible n (and summing the proba-
bilities), we can uncondition on n and obtain our desired solution for the original CTMC
process.

In practice, computing x(0)eQ� requires that we truncate the in�nite series 2.12 and sum
the remaining terms in a numerically stable way. To do this, we employ the Fox-Glynn
algorithm [19], which de�nes left and right truncation points, L1 and R1, respectively, so
that

x(0)eQ� �
R1X

n=L1

x(n)Poiss(n; q�)

and the error is bounded by 10�d (d digits of precision) if

L1 = max
k2N

(
kX

n=0

Poiss(n; q�) �
10�d

2

)

R1 = min
k2N

8<
: 1�

kX
n=L1

Poiss(n; q�) � 10�d

9=
; :

Note that although the Poisson probabilities are only computed in the range L1 � n � R1,
the vector-matrix multiplications must be done for 0 � n � R1.

Just as in the power method for DTMCs, we can compute the same y(�) and ~y, de�ned
in the previous section as

y(�) =
Z �

0
x(u) du = x(0)

Z �

0
eQu du

~y = lim
�!1

y(�)
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at the same time x(0)eQ� is computed [20]. Substitution of the uniformization computation
for eQu yields

x(0)
Z �

0
eQu du =

Z �

0

 
1X
n=0

x(n) � Poiss(n; qu)

!
du

and after factoring the summation series over n, we have

1X
n=0

x(n)
Z �

0
Poiss(n; qu) du;

which can be written equivalently as

1

q

1X
n=0

x(n)

 
1�

nX
`=0

Poiss(`; q�)

!
:

using integration by parts. Although we must begin at n = L2 = 0 here, a right truncation
point R2 can be found with bounded error. Since the total sojourn in all states over an
interval [0; �] must be �, so that






x(0)
Z �

0
eQu du







1

= �;

we can stop when the di�erence between � and (1�
Pn

`=0 Poiss(`; q�)) becomes small. Thus,
we have the right truncation point

R2 = min
k2N

(
� �

1

q

kX
n=0

 
1�

nX
`=0

Poiss(`; q�)

!)
� 10�d

When computing both x(0)
R �
0 e
Qu du and x(0)eQ�, the smallest left truncation point

L = 0 and largest right truncation point R = max(R1; R2) are chosen.
In case the CTMC with generatorQ is ergodic, we can also test for stationary conditions

to check whether � is large enough for the DTMC to have reached steady state. Detecting
stationary conditions that occur before the right truncation is reached, and halting, can
result in signi�cant performance gains.

But if stationary solutions are sought then there is a better way just as in the DTMC
case. When stationary or steady-state equilibrium is reached, the change in probability mass
between states becomes zero. So we can set the derivative in Equation 2.8 to zero and obtain
global balance equations for the CTMC:

xQ = 0 (2.13)

where x satis�es the stationary solution lim�!1 x
(�) independent of the initial probability

distribution when the CTMC is ergodic. The same argument used in the previous section
against employing direct methods apply here as well; iterative methods are better even
though convergence is not guaranteed for all initial guesses.
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With iterative methods, we can also solve the following system of linear equations for
the cumulative probability vector ~y = lim�!1 y

(�):

~y ~Q = �~x(0): (2.14)

Like in Equation 2.2 for the DTMC case, the use of iterative methods for Equation 2.2
enjoys guaranteed convergence since � ~Q is also an M-matrix. Because the use of Equations
2.13 and 2.14 has the same complexity as Equations 2.1 and 2.2, respectively, steady-state
solutions are computed directly from the CTMC in practice.

Because the uniformization algorithm is integral to the solution algorithms developed
later, we provide it here as Algorithm 2.2.1, without steady-state detection. The algorithm
computes the transient probability vector �(�) 2 R

jSi j on the CTMC state space Si orig-
inating from the initial state i where �j = PrfX(�) = j jX(0) = i g and the cumulative
probability vector � =

R �
0 �

(u) du. The algorithm assumes that � contains the initial proba-
bility distribution when the algorithm is invoked.

Algorithm 2.2.1 Extended uniformization algorithm

1: Given the solution time �, generator Q 2 RjSi j� jSij, and
initial probability vector � 2 RjSi j,

2: Let q  1:02 �maxi jQiij and A q�1Q+ I

3: x̂ �

4: �  0

5: �  0

6: s 1
7: Choose L and R for desired precision 10�d

8: Compute Poiss(n); 8 n; L � n � R using Fox-Glynn algorithm
9: for n 0 to L� 1 do
10: �  � + x̂
11: x̂ x̂A

12: end for

13: for n L to R do

14: s  s � Poiss(n)
15: �  � + Poiss(n) � x̂
16: �  � + s � x̂
17: x̂ x̂A

18: end for

19: �  �=q
20: return solutions �; �
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2.3 Phase-Type Models

Phase-type random variables are de�ned as the time-to-absorption of Markov chains with at
least one absorbing state. An absorbing CTMC (via a rate matrix) is used for continuous
phase-type distributions (let PH denote this family hereafter) and an absorbing DTMC (via
a stochastic matrix) is used for discrete phase-type distributions (denoted hereafter by DPH).
Each must also include a speci�cation of the initial state occupancy probabilities that the
absorbing Markov chain assumes when a new random variable is \sampled". Special cases
of PH, as shown in Figure 2.3, include: exponential (Expo), Erlang, hyper-exponential
(Hyper), and hypo-exponential (Hypo). Special cases of DPH, as shown in Figure 2.4,
include: geometric (Geom), constant integer multiples of � (Const), and discrete uniform
(Equiprob).

λ

4 3λ1arbitrary PH-type
λ2

2
λ8

0

1

λ7

λ3

λ6

λ4

λ5

b

21−α
Hyper( λi, 2 )

λ2

0

1

α λ1

1 0Expo( λ ) k k-1λ1Hypo( λi, k ) λ2 0λk...

2 1λ 0Erlang( λ, 2 ) λ

Figure 2.3: Example continuous-time phase-type (PH) random variables.
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Figure 2.4: Example discrete-time phase-type (DPH) random variables with step � .
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The reachability graph and corresponding state space of a SPN with PH or DPH �ring
delays is constructed by expanding the state space and state transitions so as to remember
the RFT of each enabled transition until one or more transitions can �re. The RFT for
phase-type �ring delays is naturally discretized, and so the pairing of each possible phase
vector � together with each possible, discrete PN marking vectorm produces a state (m;�)
within an expanded Markov chain. By including enough information in the current state
about the past evolution of the process, the past can be forgotten, essentiallyMarkovianizing
the process. Because the idea of supplemented states is important to our research, we will
soon revisit this topic in greater detail. After �ring a transition t, the execution policies that
de�ne what happens to the RFT of transitions still enabled are then applied to create a new
phase vector �0 paired with the new marking M(t; m).

If the transition t that �res is once again enabled in the new marking, then a new �ring
delay is sampled from its PH or DPH distribution function (an absorbing Markov chain)
and included in �0 of the new state. If the �ring transition t is not enabled in the marking,
then its phase component, �0t, within vector �

0 is unspeci�ed, a \don't care". This procedure
continues until no new state is discovered or until no transitions can �re (this event results
in an absorbing state in the reachability graph).

For all phase-type transitions t and all reachable markingsm, the possible combination
of phases can be obtained by performing the Cartesian product of the phase space, denoted
by Dt, of each absorbing Markov chain that speci�es the phase-type �ring delay: a stochastic
matrix Dt(m) for DPH phases or a rate matrix Et(m) for PH phases. We allow the �ring
delays to be marking dependent by letting these matrices be functions of the marking.
For DPH phases, the result is a Cartesian product of the constituent phase spaces and an
arithmetic product of all corresponding one-step probabilities. For PH phases, the result is
a similar Cartesian product and an arithmetic sum of all corresponding rates. Hereafter,
we let D denote the potential phase space in the expanded model. When discrete-time and
continuous-time models are considered separately, an expanded DTMC results from DPH
phases and an expanded CTMC results from PH phases.

For DPH models, the expanded DTMC states and transition probabilities are speci�ed
formally using the Kronecker multiplication. LettingA 2 Rr�r and B 2 Rs�s , the Kronecker
product 
 is de�ned as

A
B =

2
6666664

a11B a12B � � � a1rB

a21B a22B � � � a2rB
...

...
. . .

...

ar1B ar2B � � � arrB

3
7777775

the result being of order rs [21]. Then, for each DPH transition t, the expanded DTMC on
the total, potential phase space D is given by

D(m) =
O
t

Dt(m) (2.15)

with order
Q

t jD
tj. The stochastic matrix D(m) completely speci�es all conditional next

phases and associated probabilities that can occur in one basic step. By referring to a
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\potential" phase space, we emphasize that not all combinations of discrete phases given by
the matrix equation 2.15 is reachable.

For PH models, the expanded CTMC states and transition rates are speci�ed formally
using the Kronecker addition. Using 
 and the identity matrices Ir and Is of order r and
s, respectively, to obtain the correct dimension for summing A and B, the Kronecker sum
� is de�ned as

A�B = A
 Is + Ir 
B

Then, for each PH transition t, the expanded CTMC on the total, potential phase space D
is given by

E(m) =
M
t

Et(m) (2.16)

with order
Q

t jD
tj. The rate matrix E(m) completely speci�es all conditional next phases

and associated transition rates that can occur in continuous time.
An example reachability graph isomorphic to an expanded DTMC is shown in Figure 2.5

assuming DPH transition timing: t1 � Geom(p; 1), t2 � Geom(q; 3), t3 � Const(2), and t4 �
Const(1). The states are composed of both marking and RFT information corresponding to
the discrete, �ring delay phases of each enabled transition. Phases of transitions not enabled
are of no importance and consequently are indicated by \�" symbols.

Note that the state transitions associated with \�" are those where no transition actu-
ally �res, but merely update the phase information. The one-step transition probabilities
originating from state (110001; 11 � �) are shown in Figure 2.6. Here we see the presence
of the simultaneous �ring of t1 and t2 between states (110001; 11 � �) and (000111; � � �1).
Unlike the continuous-time PH models where the probability of any two transition having
the same �ring time is zero, such contemporary �rings are possible, indeed likely, with DPH
models.

Contemporary �rings not only have the potential of making the reachability graph more
dense (more state transitions) than one with PH transitions, but can create confusion. Two
transition are said to be concurrent when each can �re and the �ring of one does not a�ect
the �ring of the other. Two transitions are said to be in con
ict when the �ring of one
prevents the �ring of the other. When we have both concurrency and con
ict, we may have
confusion [8].

Consider the examples of possible confusion in Figure 2.7 where contemporary �rings
are possible and where there exists a mix of concurrency and con
ict. In both examples,
transitions a and c are concurrent, and transitions b and c are in con
ict. In the bottom
example, there is also con
ict between transitions a and b. Even though contemporary �rings
are possible, a �ring sequence must be chosen and applied to the function M to determine
the next marking. PN confusion can occur when the next marking depends on the order in
which transition �rings are chosen. When considering the marking

(m1m2m3m4m5) = (10100)

shown in the top example, we only see the concurrency between transitions a and c, but if
we choose to �re transition a �rst, and move to the next marking

(m1m2m3m4m5) = (01100);
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Figure 2.5: Markovianized process of the example SPN of Figure 2.1.

we encounter a con
ict between transitions b and c. If we instead choose to �re transition c
�rst, and move to the next marking

(m1m2m3m4m5) = (10001);

then transition b is prevented from �ring whether or not transition a �res next in the same
marking. Thus, di�erent outcomes arise depending on which transition, a or c, is chosen
�rst as shown by the reachability graph in the top-right corner of Figure 2.7. The confusion
about which transition to �re �rst must be resolved by either avoiding the confusion in the
�rst place, by preventing the bothersome enabling of transitions, or by forcing a particular
�ring sequence. Either �x can be accomplished by employing a di�erent net speci�cation,
guards, or preselection priority. Preselection priorities can resolve con
icts in untimed PNs
or within timed PNs for immediate transitions that can �re in zero time. Using preselection
priorities for example, di�erent probabilities can be assigned to each sequence leading to the
three new states, such that all probabilities sum to one. This results in a stochastic model
even though the PN may be untimed.
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Figure 2.6: Transition probabilities for a portion of Figure 2.5.

When analyzing timed PNs, we may also have stochastic confusion. In the bottom
example of Figure 2.7, PN confusion does not exist since the net reaches the same marking
no matter which sequence is chosen. However, if impulse rewards� 
 : T ! R are used such
that 
(a) + 
(c) 6= 
(b) then stochastic confusion results since the reward measure depends
on the chosen sequence. If the stochastic outcome di�ers depending on the order in which
transitions in a contemporary �ring sequence are selected to �re, then the model is not \well
de�ned". Such confusion may be resolved the same way as with PN net confusion or with
the addition of postselection priorities. Rather than preventing the simultaneous enabling
of transitions that may lead to confusion, we may instead leave them be, let them delay,
and if their simultaneous �ring leads to confusion, decide then which transition gets to �re
�rst using postselection priorities. The understanding of this problem and possible solutions,
including the use of postselection priorities, have already been discussed in [22, 23, 24] and
can be brought to bear on the research proposed here.

2.4 Semi-Markov Models

If the sojourn times in states are Expo or Geom random variables, we have a Markov chain:
a CTMC in the former, which is memoryless for all time, and a DTMC in the latter, which
is memoryless at times multiple of the basic step. Alternatively, if the sojourn times in
states are all equal to the same constant � 2 N , we still have a DTMC. From the previous

�Each time a state transition occurs due to the �ring of t, a reward of 
(t) is accumulated.
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Figure 2.7: Examples of possible Petri net and stochastic confusion.

section, we know that although such models are restricted, they lend themselves to eÆcient
time-dependent and stationary analysis.

In more general cases, semi-Markov processes satisfy the Markov property at times of
jumps when state transitions occur, but not necessarily between jumps. Consequently, the
sojourn times for semi-Markov processes can be arbitrary, nonmemoryless random variables.
Satisfying the Markov property in at least a \semi" way a�ords eÆcient, stationary analysis
just as strict Markov chains, but time-dependent analysis becomes diÆcult. The following
theory used to study semi-Markov chains is provided below in preparation for the more
general theory needed to study semi-regenerative processes, of which Markov and semi-
Markov chains are special cases.

Consider a random variable Xn, de�ned for each n 2 N and taking values from the state
space E , and a random variable Tn, likewise de�ned for each n but taking values in R+ such
that T0 = 0 and Tn � Tn+1; 8n 2 N . The process f (Xn; Tn) : n 2 N g is called a Markov
renewal process (MRP) with state space E if the following holds 8n 2 N ; 8 j 2 E :

PrfXn+1 = j; Tn+1 � Tn � � jX0; X1; : : : ; Xn;T0; T1; : : : ; Tn g =

PrfXn+1 = j; Tn+1 � Tn � � jXn g = PrfX1 = j; T1 � � jX0 g

The sequence fXn : n 2 Ng is a DTMC. An example MRP sample path is portrayed in
Figure 2.8.
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Figure 2.8: Markov renewal process.

Consider a stochastic process fX(�) : � � 0 g with state space S that has an em-
bedded MRP with state space E � S. That is, observing X(�) at certain, random times
Tn and recording the state Xn occupied at those times produces a MRP. Analogous to
the CTMC embedding discussed in the previous section, if we can determine the tran-
sition probability matrix � of the embedded DTMC (EMC) and its stationary solution
xi = limn!1 PrfXn = i g, i 2 E , then we can easily compute the stationary distribution
pj = lim�!1 PrfX(�) = j g, j 2 S, of the complete process. For a semi-Markov process,
one that enjoys a renewal after every state transition, as portrayed in Figure 2.8, we have
S = E and E[ T1 jX0 = i ] = E[ sojourn in i ], i 2 E , and

~xi = xi � E[ sojourn in i ]; pj =
~xjP

k2S
~xk
: (2.17)

This well known technique of \embedding" is based on the following reasoning. The station-
ary probability distribution can be interpreted as the fraction of time the process resides in
each state. For there to be a unique stationary solution, the EMC must be ergodic; i.e., it
is aperiodic, positive recurrent, and irreducible. The aperiodic property ensures that we can
compute an unique stationary solution, given that the other two properties also hold. The
positive recurrent property means that the process after leaving some state will eventually
return to the same state in some �nite time. The irreducible property means that every
state can reach every other state. So to determine the expected cycle time of the stationary
process, we need only pick a single reference state. Let state k be this reference state. Then
after determining the stationary solution of the EMC, xi, 8 i 2 E , we can interpret the ratio
xi=xk as the expected number of visits to state i between two visits to state k. The expected
sojourn time in state i within a stationary cycle is just E[ sojourn in i ] � xi=xk and the ex-
pected cycle time is just

P
j2E E[ sojourn in j ] � xj=xk. Equations 2.17 then follows from the

interpretation that the stationary probability distribution is the fraction of time the process
resides in each state within the expected cycle time.

The embedding method makes intuitive sense as well when we think of it as just scaling
the stationary probability distribution of the EMC according to the expected sojourn times
and then normalizing so that the new distribution sums to one. This idea of \scaling" is
useful in understanding the theory that follows.
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2.5 Semi-Regenerative Models

For a semi-regenerative process, one that becomes a probabilistic replica of itself at certain
random times Tn, given the same state Xn, the stationary solution is computed in a way
similar to semi-Markov processes except that� and E[ sojourn in k during [0; T1) jX0 = i ],
i 2 E , k 2 Si, must be computed by studying the subordinate process, the process with state
space Si that evolves between renewals [25]:

~xk =
X
i2E

xi � E[ sojourn in k during [0; T1) jX0 = i ]; pj =
~xjP

`2S
~x`
: (2.18)

An example sample path of a semi-regenerative process is portrayed in Figure 2.9.
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Figure 2.9: Semi-regenerative process sample path.

The problem of solving a semi-regenerative process using Markov renewal theory is re-
duced to studying the stochastic process between the Tn points in time when the process
enjoys an absence of memory concerning its past. Unlike the semi-Markov process, the
semi-regenerative process can occupy many states (within the subordinate process) between
renewals, referred to hereafter as regeneration times. So the embedding technique used for
semi-Markov processes by \scaling" is applicable to semi-regenerative processes except that
we proportionally redistribute the EMC stationary distribution over all the states visited
in the subordinate process between regenerations, followed by normalization. For semi-
regenerative processes, the distribution, scaling, and normalization required to compute the
stationary solution from the EMC is referred to hereafter as conversion. We will return to
the subject of embedding a semi-regenerative process after we present the key aspects of
Markov renewal theory, which is needed to compute the EMC and the conversion factors.
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In general, Markov renewal theory depends on the speci�cation of the following two
quantities:

Gij(�) = PrfXn+1 = j; Tn+1 � Tn � � jXn = i g

= PrfX1 = j; T1 � � jX0 = i g;

Hik(�) = PrfX(�) = k; T1 > � jX0 = i g i; j 2 E ; k 2 Si

where the elimination of n is justi�ed by assuming homogeneity. Hik(�) gives the transient
probability of occupying state k 2 Si � S at time � before the next regeneration given the
initial state i 2 E entered at the last regeneration. The subordinate process evolves during
the interval [Tn; Tn+1) or equivalently [0; T1) when X0 = Xn. Gij(�) gives the state transition
probability of the EMC between two consecutive regenerations jointly with the distribution
of the regeneration period T1.

The quantitiesG andH can be recursively combined similar to the Chapman-Kolmogorov
equation to obtain

Pij(�) = Hij(�) +
X
k2E

Z �

0
dGik(�)Pkj(� � �) i; j 2 S (2.19)

known as the Markov renewal equation. Markov renewal theory is essentially the application
of this equation to aid the study of semi-regenerative processes.

If E is �nite, the Markov renewal equation is satis�ed by the unique solution

Pij(�) =
X
k2E

Z �

0
dRik(�)Hkj(� � �); (2.20)

where R is the Markov renewal function [25]. The Markov renewal function Rij(�) is de�ned
as the expected number of renewals observed at a �xed state j 2 E starting from state i 2 E
within a �xed interval [0; �]:

Rij(�) =
1X
n=0

PrfXn = j; Tn � � jX0 = i g =
1X
n=0

Gn
ij(�):

where Gn
ij(�) is the n-fold convolution of Gij(�) with itself.

Finding the transient probability distribution Pij(�) that satis�es Equations 2.19 or 2.20
is not a trivial task in general. For models with large dimensions, direct solution in the time
domain is expensive and is susceptible to numerical diÆculties or instabilities. Alternatively,
Equation 2.19 can be solved as a linear system of equations in the s-domain by utilizing the
Laplace-Stieltjes transform [26]. However, the numerical inversion necessary to obtain the
time-domain solution afterwards is also complex if numerical instabilities are to be avoided.
So it would seem that the diÆculties in obtaining an exact, time-dependent solution of semi-
regenerative processes makes a good case for either reasonable, simplifying restrictions that
make R easier to compute, or approximations [27].

Fortunately for stationary analysis, the method of embedding indirectly produces a so-
lution that satis�es

lim
�!1

Pij(�) = lim
�!1

X
k2E

Z �

0
dRik(�)Hkj(� � �)
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for any initial state i 2 S (assumed to be an embedded state at time 0) with much less
diÆculty than solving Equation 2.19 or 2.20 directly [25]. To do this, we determine the
EMC transition matrix from

�ij = lim
�!1

Gij(�) i; j 2 E (2.21)

where G itself is determined from H by observing the subordinate process at regeneration
times. At the same time, the conversion factors, denoted hereafter by h = [hik] 2 R

jEj�jSj,
are computed 8 i 2 E , k 2 Si, from

hik = E[ sojourn in k during [0; T1) jX0 = i ] =
Z 1

0
Hik(�) d� (2.22)

from which we can also compute the expected value of a typical regeneration period

E[T1 jX0 = i ] =
X
k2Si

hik:

Consequently, the complexity of the method is dictated by the complexity of studying the
subordinate process and the EMC. The solution complexity of these two subproblems de-
pends to a large degree on the regeneration points that are sampled|which ones and how
many. The PDPN solution algorithms we propose in Chapter 4 are developed with these
considerations in mind.

We now focus on the application of Markov renewal theory to the deterministic and
stochastic PN (DSPN) [3] and its generalization, the Markov regenerative SPN (MRSPN)
[12]. We assume for clarity that the probability distribution function or PDF (also known as
the cumulative distribution function or CDF) for the �ring delay of a generally distributed
transition t,

F t(�) = Prf transition t �ring delay � � g;

is not marking dependent and that t cannot be preempted by the �ring of another transition.
While marking dependent PDFs and preemption policies have been addressed, in [28, 15,
29, 30] for example, such situations introduce an unnecessary complication to the following
discussion. Although we assume marking independent PDFs for our work, we do allow
certain kinds of preemption and so this topic is discussed later in Chapter 4.

Starting with Gij(�) and conditioning on the events fT1 = � g and fX(�) = k g, we can
equivalently write, for i; j 2 E ,

Gij(�) =
X
k2S

�Z
0

PrfX1 = j jX(�) = k gPrfX(�) = k jX0 = i g dPrfT1 � � jX0 = i g:

(2.23)

For MRSPNs, which are restricted so that at most one generally distributed transition is
enabled in any marking, and with our assumptions, regeneration points are observed at
times when generally distributed transitions either become enabled or �re. When only Expo
transitions are enabled, regeneration points are observed just after each state transition as a
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result of Expo transition �rings. This means that the subordinate process is a general CTMC
at worst, when a generally distributed transition is enabled, and a single state CTMC at
best, when no generally distributed transitions are enabled.

Consider a regeneration period starting with a known embedded state i 2 E . For the
simple case when only Expo transitions are enabled, let ��1i denote the expected sojourn
time in state i and let �ij be the rate that the exponentially distributed process transitions
between state i and some next state j. Then �ij is given in closed form as �ij�

�1
i .

For the more complex case, when a generally distributed transition t is enabled, we can
substitute the PDF for transition t, F t(�), in place of PrfT1 � � jX0 = i g and recognize
that PrfX(�) = k jX0 = i g is just the solution of the subordinate CTMC at time � when t
may �re. The quantity PrfX1 = j jX(�) = k g is simply the probability of entering marking
j when t �res in marking k, possibly followed by a �ring sequence of immediate transitions,
all occurring in zero time. We denote this switching probability with �t

kj. If no immediate
transition �ring can occur, �t

kj = 1 if k = j and 0 otherwise. These substitutions into
Equation 2.23 yields

Gij(�) =
X
k2S

�Z
0

h
eQi�

i
ik
dF t(�)�t

kj i; j 2 E (2.24)

for the MRSPN where Qi denotes the CTMC generator with state space Si and initial state
i 2 E .

When only exponential transitions are enabled in state i 2 E , we know that the expected
sojourn time in i is ��1i from Equation 2.4, and so Hii(�) = e��i�. For the more complex
case, we can rewrite Hik(�) equivalently as

Hik(�) = PrfX(�) = k; T1 > � jX0 = i g

= PrfX(�) = k j T1 > �;X0 = i gPrfT1 > � jX0 = i g i 2 E ; k 2 Si

and again for the MRSPN when a generally distributed transition t is enabled in state
i 2 E , we can substitute PrfX(�) = k j T1 > �;X0 = i g with the transient solution of the
subordinate CTMC at time � and obtain PrfT1 > � jX0 = i g from the PDF of t to get

Hik(�) =
h
eQi�

i
ik

�
1� F t(�)

�
: (2.25)

The DSPN is a special case of the MRSPN where the non-exponential transitions t have
deterministic �ring delays, speci�ed by Const(�t). With the substitution F (�)t = Const(�t)
in Equations 2.24 and 2.25 we can obtain the Equations 2.26 and 2.27 for the EMC� = [�ij]
and conversion factors h = [hik], respectively:

�ij = lim
�!1

Gij(�)

=
X
k2S

1Z
0

h
eQi�

i
ik
dF t(�)�t

kj

=
X
k2S

1Z
0

h
eQi�

i
ik
Æ(�t) d�t�

t
kj

=
X
k2S

h
eQi�t

i
ik
�t

kj (2.26)
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and

hik =
Z 1

0
Hik(�) d�

=
Z 1

0

h
eQi�

i
ik

�
1� F t(�)

�
d�

=
Z 1

0

h
eQi�

i
ik

�
1� 1(� � �t)

�
d�

=
Z �t

0

h
eQi�

i
ik
d� (2.27)

where Æ(�) is the unit impulse function and 1(�) is the unit step function. We will �nd
Equations 2.26 and 2.27 useful in the analysis of the non-Markovian SPN proposed in the
remaining chapters.

We end this section by providing in Figure 2.10 the underlying semi-regenerative process
for our running example when all transitions but t3 are exponentially distributed. The semi-
regenerative process graph shown here is the same in structure, but not timing, of course,
whether we consider the model to be a MRSPN or a DSPN by assuming transition t3 to
be generally distributed or deterministic, respectively. States in the EMC are shadowed to
distinguish them from the states in the subordinate Markov chain that evolve due to the
�ring of transitions t1 and t2 while t3 is enabled. Once t3 has �red, all states visited are
considered embedded states until t3 becomes enabled once again. The initial state (111000)
is considered to be both an embedded state and subordinate state by de�nition. Note that
the semi-regenerative process graph is isomorphic to the PN reachability graph given in
Figure 2.2. This is not happenstance. This is always the case for DSPNs or MRSPNs when
at most one deterministic or general transition, respectively, is enabled in any marking.

A suÆcient condition for isomorphism between the PN reachability set R and the under-
lying stochastic state space S is if all �ring delays have continuous distributions with in�nite
support [0;1). But this is not a necessary condition as shown by the fact that DSPNs,
with �nite-support, deterministic �ring delays, have reachability sets that are isomorphic to
the underlying stochastic state space. The necessary conditions for isomorphism ensure that
the timing speci�cation allow every enabled transition to have a chance of �ring. That is,
8m 2 R:

1. The quantity Prf t �res; �ring delay � � j history g, at the present, is uniquely deter-
minable by observing the past evolution constituting the history,

2.
P

t2F(m)
lim
�!1

Prf t �res; �ring delay � � j history g = 1, and

3. 8 t 2 F(m); Prf t �res j history g = lim
�!1

Prf t �res; �ring delay � � j history g > 0

are true [4]. Simply put, (1) and (2) ensure unambiguous determination of future states given
the past even when timing constraints are imposed, and (3) ensures that every transition
has an opportunity to �re in every marking that enables it. When these criteria are met,
the determination of R is independent of the �ring-delay distributions. These conditions are
satis�ed by DSPNs and MRSPNs since at most one deterministic or general, respectively,
transition t is enabled in any given marking. Because all other enabled (Expo) transitions
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have continuous distribution functions with in�nite support starting at 0, transition t is able
to �re before any other enabled transition, and the other transitions are able to �re before
transition t. Hence, every enabled transition has an opportunity to �re.
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Figure 2.10: Semi-regenerative process for generally distributed t3 and all others Expo.

The complexity of studying semi-regenerative processes increases with the complexity of
the subordinate process. Models with at most one generally distributed transition enabled are
convenient because they restrict the subordinate process to a CTMC. But when we allow the
simultaneous enabling of multiple, generally distributed transitions, the subordinate process
is more complicated. For example, the MRSPNs was extended in [29] by allowing multiple
general transitions to be simultaneously enabled, provided that only one of the general
transitions de�nes the next regeneration point. But the subordinate process becomes a
semi-Markov chain, which is more diÆcult to solve in the transient than a CTMC. With
unrestricted models in general, the subordinate process may be a semi-Markov chain or
worse, perhaps even a semi-regenerative process by itself.

For example, consider our running example model with two generally distributed and
two exponentially distributed transitions: t1 � F t1(�), t2 � F t2(�), t3 � Expo(�), and
t4 � Expo(�). Since t1 and t2 are simultaneously enabled in markings (111000) and (110001),
we cannot be sure, in general, that the underlying process is semi-regenerative. But if, for
instance, the PDFs were such that t1 always delays longer than t2 then, because they both
become enabled simultaneously, we know that once transition t1 �res, everything about the
past since t1 and t2 became enabled can be forgotten. Because the stochastic marking process
regenerates itself at this point in time, and depends on the state reached when t1 �res, the
process is semi-regenerative.

Starting in the initial state (111000), assumed to be a regeneration point, the next
regeneration point would coincide with the �ring of transition t1 and the subordinate process
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that evolves in between (due to the �ring of t2 and t3) is itself a semi-regenerative process. So
we have a two-level semi-regenerative process hierarchy|regeneration when t2 �res at level 2
and regeneration when t1 �res at level 1. This underlying process is portrayed in Figure 2.11
where the embedded states at level 1 (the ones we wish to place in E) are shadowed.
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Figure 2.11: Two-Level Semi-regenerative process.

The subordinate processes for levels 1 and 2 are partitioned into two groups. The level
2 subordinate process, a 2-state CTMC, has initial state (111000) with probability one; it is
also an embedded state by de�nition. The level 1 subordinate process, also a 2-state CTMC,
has an initial probability distribution subject to the transient analysis at level 2, which gives
the probability of entering either of the two states (101010) or (100011) when t2 �res. The
embedded state entered at level 1 depends on the subordinate state occupied when t1 �nally
�res. The grayed portion of the graph indicates the states that are no longer reachable
from (111000) because of the imposed timing, i.e., transition t1 must �re after t2. Unlike
the previous examples, the reachability graph is obviously not isomorphic to the stochastic
process and S � R.

In cases like this, studying the subordinate process between regeneration points becomes
as diÆcult as studying the actual process. Moreover, under di�erent assumptions, regener-
ation points may be rare or the process may not even be semi-regenerative. Without sim-
plifying assumptions, the underlying process of an SPN may be a generalized semi-Markov
process.
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2.6 Generalized Semi-Markov Models

By de�nition, the future markings of an untimed PN depends only on the current marking,
not the past markings, and so the Markov property holds. It is the nature of the timed
marking process, a stochastic process, that complicates matters when any transition t has a
PDF, F t(�), that is not memoryless, and hence the Markov property does not hold. Without
restrictions, the underlying process of an SPN is known as a generalized semi-Markov process
(GSMP).

By including in the GSMP state the RFT information for each transition along with
the current marking, everything about the past that is needed to determine the future
evolution of the stochastic process is contained in the current state. Hence, the past can be
forgotten. Alternatively, we could instead augment markings with age information, which
records the times since transitions became enabled without �ring. Either way, by e�ectively
Markovianizing the process, customary Markov techniques can be applied, albeit to a larger,
possibly continuous, state space and, perhaps, a more complicated reachability graph. This
\Markovianizing" of the underlying process, which can then be solved using a generalization
of Kolmogorov's forward (or backward) equations, is called the method of supplementary
variables, which was �rst proposed by Cox in [31]. However, the new, Markovianized process
is a continuous-state process in general because of the continuous nature of the age or RFT
information that are augmented with the discrete marking information.

The method of supplementary variables has been applied to DSPNs and MRSPNs in
[32] as an alternative to Markov renewal theory. Unlike Markov renewal theory, this method
is still applicable when the process is a GSMP. A fourth-order, stationary solution algorithm
has been proposed in [33] for DSPN and MRSPN models. Unfortunately, the solution of such
system of equations is usually too numerically challenging for anything other than models
with very small dimensions. We will back up this claim while describing the method of
supplementary variables using our running example.

When employing the method of supplementary variables, there is some freedom of choice
in how the generalized Kolmogorov's equations are constructed. We can choose to look
forward or backward, use age or RFT variables, and specify di�erential or integral formulas.
The published literature regarding the solution of extended DSPNs and MRSPNs with the
method of supplementary variables tend to use forward equations and age variables, and we
choose to do so here as well.

Generalized Kolmogorov's equations, forward or backward, require the use of a stationary
probability density function (pdf) on the state and age variable jointly:

qk(�) = lim
�!1

d

d�
PrfX(�) = k; a � � g

where � 2 R
+ , k 2 S, and a 2 R

+ denotes the age variable. A multidimensional pdf,
qk(a1; a2; : : : ; an), is used for states that enable more than one generally distributed transi-
tion. Instead of the constant rates given by the in�nitesimal generator matrix, the generalized
Kolmogorov's equations also require the use of instantaneous rate functions, de�ned as

�t(�) =
f t(�)

1� F t(�)
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where f t(t) = d
d�
F t(�) is the pdf of the �ring delay for transition t. Since �t(�) is a conditional

probability function (not a PDF however), this allows the age information a to be taken
into consideration when computing the state transition rates. That is, if a denotes the
age of transition t then �t(a)da is interpreted as the conditional probability that t �res
in the next da interval given that it has not �red in time a since becoming enabled. Of
course, �t(�) = �, a constant, if t is exponentially distributed with rate �. So when only
exponentially distributed transitions are enabled, the forward equations will degenerate to
the familiar system of equations (Equation 2.8) presented earlier for CTMCs.

As a consequence of the supplementary variable conditioning, we must be careful of
the initial value and boundary conditions when constructing the state equations. Moreover,
the Kolmogorov's forward equations must be partial di�erential equations when more than
one transition with general �ring delays are enabled simultaneously, coinciding with states
having multiple age variables.

Consider the last example model used at the end of the previous section but without any
special assumptions about F t1(�) and F t2(�). In this case, the underlying process is a GSMP.
Let a1 2 R and a2 2 R be the ages of transitions t1 and t2, respectively. Of course, age
information for transitions t3 and t4 can be omitted since the Expo PDF is the same when
conditioned with age (or RFT) information; hence, nothing concerning elapsed time needs
to be remembered. Only states that enable t1, t2, or both are supplemented with a1, a2, or
both, respectively. The GSMP for our example is shown in Figure 2.12 while also introducing
a di�erent depiction of \supplemented states", enumerated by k 2 f 1; 2; : : : ; 8 g = S. That
is, the supplemented states are portrayed as two circles: the smaller, raised one contains
the marking and the larger one contains the age information. This depiction will be used in
Chapter 4 when presenting the solution algorithms for our new SPN class, except that instead
of continuous age, discrete information concerning the RFT of phase-type transitions will be
recorded. Referring to Figure 2.12, the state equations using the method of supplementary
\age" variables are constructed as follows.
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Figure 2.12: GSMP where t1; t2 are generally distributed and all others Expo.
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First, we must consider the initial values for the age variables, which are both reset to
zero only upon entering state 1 from state 8. We assume that F t1(�) an F t2(�) do not have
mass at the origin and so t1 and t2 must delay some positive value before �ring, and so no
other events causing out
ow of probability mass needs capturing. Consequently, the initial
value condition is simply

q1(0; 0) = q8�:

Second, we have the state equations for positive-valued age variables, constructed in the
spirit of Kolmogorov's forward equation:

d

da1
q4(a1) =

Z 1

0
q1(a1; a2)�

t2(a2) da2 � q4(a1)�; a1 > 0

d

da1
q7(a1) =

Z 1

0
q3(a1; a2)�

t2(a2) da2 + q4(a1)�; a1 > 0

d

da2
q2(a2) =

Z 1

0
q1(a1; a2)�

t1(a1) da1 � q2(a2)�; a2 > 0

d

da2
q5(a2) =

Z 1

0
q3(a1; a2)�

t1(a1) da1 + q2(a2)�; a2 > 0 
@

@a1
+

@

@a2

!
q3(a1; a2) = q1(a1; a2)�; a1 > 0; a2 > 0

The integrals are needed to uncondition on the age variable associated with the transition
that �res, thereby causing the state transition of interest.

Third, we have equations for states without age variables, which resemble the familiar

ow-balance equations for CTMCs:Z 1

0
q4(a1)�

t1(a1) da1 +
Z 1

0
q2(a2)�

t2(a2) da2 � q6� = 0Z 1

0
q7(a1)�

t1(a1) da1 +
Z 1

0
q5(a2)�

t2(a2) da2 + q6�� q8� = 0

Fourth, since we are only interested in the stationary probability distribution of mark-
ings, we also need equations that eliminate the age variables:

pk =

8>>>>><
>>>>>:

RR1
0 qk(a1; a2) da1 da2 : k 2 f 1; 3 gR1

0 qk(a2) da2 : k 2 f 2; 5 gR1
0 qk(a1) da1 : k 2 f 4; 7 g

qk : k 2 f 6; 8 g

where pk = lim�!1 PrfX(�) = k g, k 2 S.
And �nally, we need one last equation to normalize the solution:

X
k2S

pk = 1:

Of course, all of the above equations need to be satis�ed simultaneously. Numerical
solution of such system of equations ultimately requires the discretization of the continuous
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variable di�erential-integro equations so that �nite di�erence equations can be solved instead.
We must also assume that F t1(�) and F t2(�) have �nite support so that a �nite dimension
mesh can be constructed. But even then, computing the solution is numerically challenging.
We do not intend to solve models this way. The real purpose of this exercise was to show that
even with this small, simple model, solving general SPN models with underlying GSMPs is
computationally challenging and costly.

Alternative solution techniques for GSMP models have been investigated. One of these,
presented in [34], observes the process at �xed intervals and records the marking and RFT
at these times. This procedure gives rise to an embedded general state-space Markov chain
from which state equations can be written and then transformed into a system of Volterra
equations. These Volterra equations permit the speci�cation of state transitions subject to
the clock readings at the equidistant time intervals and can be simpler to solve numerically
than the method of supplementary variables.

When faced with practical considerations, the modeler is usually limited to simulation.
SPN-speci�c simulation techniques have also been investigated. In [35], structural properties
and conditions imposed on the SPN model are exploited that ensures the underlying pro-
cess is regenerative so that faster regenerative simulation can be employed. A regenerative
process is in fact a special case of semi-regenerative processes, one that regenerates itself
probabilistically but also independently to the state entered at each regeneration time, thus
it is more restricted. For example, a semi-regenerative process with only a single state is
a regenerative process. A di�erent simulation technique can be found in [36] where time-
averaged statistics can be obtained using methods based on standardized time series, in
particular, the method of batch means with the number of batches �xed. This method can
analyze simulated output where the regeneration methods are not applicable.

The disadvantages to using simulation for general SPN models is that the results can
be inaccurate, limited to con�dence intervals, and require long simulation times. Also, the
state space is never explored exactly, a shortfall that may preclude logical analysis and
model-based formal veri�cation. That is, just because some state speci�c property (such
as deadlock) or sequence-speci�c property (such as an undesirable chain of events) is not
observed in the simulation run does not mean that such properties do not exist in the model.
It could simply mean that the simulation was not run long enough.
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Chapter 3

Proposed Research

The concept essential to studying a non-Markovian process using Markovian techniques is
the inclusion of additional information in the state for the purpose of remembering the
time each enabled transition has to delay before its scheduled �ring. This time is initially
sampled from its probability distribution function when a transition �rst becomes enabled.
Compared with general �ring delays, phase-type �ring delays have the advantage that the
extra RFT information included in the state is conveniently discretized into states of an
absorbing Markov chain, greatly simplifying the solution when either PH or DPH are used
alone.

PH or DPH random variables can approximate any general random variable arbitrarily
well. The use of phase-type �ring delays has had success in the past as a way of broadening
the applicability of SPN models. Indeed, continuous PH random random variables like Erlang
can even approximate discrete, constant random variables by including enough stages, since
the variance diminishes as the number of stages increases. Similarly, the discrete Geom
random variable can approximate the continuous Expo random variable arbitrarily well by
reducing the basic step size. But approximating general timing behavior by allowing either
PH or DPH alone in a given model o�ers less modeling convenience and, possibly, requires
more computational work.

Limiting a model to either PH or DPH timing may also require more computational
work. Capturing a deterministic activity into a model with only PH-type timing requires an
approximation using an Erlang random variable and may require many stages, and hence
adding to the state space. possibly, requires more computational work.

Fortunately, such restrictions are unnecessary.
We propose to extend the SPN de�nition of the previous chapter to include non-Markovian

timing that may prove useful to many problems while still a�ording an eÆcient, numerical
solution. To this end, we elect to extend the phase-type SPN formalism for use in both
discrete and continuous time, present simultaneously in the same model. This research ef-
fort will develop a new class of SPN that permits transition �ring delays with both PH and
DPH distributions. We call this new formalism a Phased Delay Petri Net (PDPN). The
contribution herein includes the �rst time that PH behavior has been combined with DPH
behavior in the same model, thereby extending the aforementioned research that considered
each separately. Alone, PH and DPH models enjoy the \memoryless" property of under-
lying CTMCs and DTMCs, respectively, making eÆcient solutions possible. Together, the
reasoning about the combined behavior becomes complicated. The proposed research will
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show that the underlying process is semi-regenerative at best (perhaps degenerating to a
DTMC, CTMC, or semi-Markov chain at times) and a generalized semi-Markov process at
worst [25, 37]. So, our contribution also includes a formalized understanding of the stochastic
process underlying this new class of SPN and the development of eÆcient algorithms for its
solution.

After presenting the PDPN in a general setting, we intend to show how certain simpli-
fying assumptions restrict the underlying stochastic process to one that is manageable with
eÆcient solutions. Investigations will be conducted into techniques that o�er eÆciencies in
exact solutions when practical. Otherwise, approximate solution algorithms will be sought
that give heuristically good results with high �delity and eÆciency. Although these assump-
tions may also restrict the set of problems that can be modeled, we anticipate nevertheless
that this will not preclude the usefulness of the PDPN to many real-world applications.

While the PDPN approach has the bene�t in �delity that comes from mixing PH and
DPH behavior, the expansion of the state space required by this approach will undoubtedly
compound the well known \state-space explosion problem". However, this extra burden on
memory can be alleviated by utilizing advanced data structures and manipulation algorithms.
For instance, decision diagrams proposed in [38, 39] o�er very compact storage with a fraction
of the memory requirements as conventional sparse storage structures where the memory
usage grows linearly with the number of states. These advanced data structures should be
just as applicable to storing the PDPN reachability graph (for performance analysis) as well
as the reachability set (for logical analysis).

We can also exploit the convenient formulation of the PH and DPH state space expansion
using Kronecker addition and multiplication, respectively. By employing data structures and
manipulation algorithms similar to the aforementioned ones, we can take advantage of the
Kronecker representations to eÆciently store the expanded state space implicitly. That is,
the sparse PH and DPH Markov chains can be stored in isolation and the expanded state
space and matrix entries can be constructed as needed using the Kronecker operators. Such
techniques have already been investigated in [40, 41, 42], and we feel that these recent
advancements in compact state-space and matrix storage techniques make phase-expansion
approaches worth revisiting.

40



Chapter 4

Preliminary Research

Before eÆcient analysis techniques can be investigated, the PDPN model must �rst be
formalized, its inherent properties understood, and interesting subclasses de�ned to aid the
investigation of solution algorithms. In this section, we discuss the underlying stochastic
process of the PDPN, how to study it, and at the same time de�ne three subclasses to the
general PDPN base class. The subclasses restrict the underlying process to one that can be
more easily studied. We discuss the �ndings of our preliminary research and the implications
to solution complexity and applicability of PDPNs. We end this chapter with a proposed
stationary solution algorithm and its analysis.

4.1 Analyzing the Underlying Stochastic Process

For convenience, we partition the set of transitions T into the set TC having PH distributions,
the set TD having DPH distributions, and the set TZ of immediate transitions having Const(0)
distributions. Although the \immediate" transitions in TZ are, in fact, special cases of DPH
transitions, we consider them separately since they are given higher priority in �ring over the
timed transitions in TC [TD, and hence are usually handled separately during the analysis.

As already stated, when PH (DPH) is used alone (possibly in conjunction with immediate
transitions), an otherwise non-Markovian process becomes a CTMC (DTMC). When PH
and DPH are allowed to coexist, we have complicated matters, but not as badly as allowing
completely general distributions. Towards constructing a PDPN reachability graph and the
corresponding stochastic process speci�cation, we must determine the possible combination
of phases that can occur, ultimately leading to a phase that allows some transition t to
�re. While at least one t 2 TD is enabled, phase changes occur at discrete instants of time
n� , where n 2 N and � denotes the basic step interval common to all DPH transitions,
referred to hereafter as the clock. Because PH distributions are continuous, the probability
of observing a PH phase change at any particular point in time, in particular at times n� , is
zero. Therefore, we can consider the DPH phase changes separately from PH phase changes.
The possible combination of DPH and PH phases for each markingm can be obtained from
Equations 2.15 and 2.16, respectively. Hereafter, we let D denote the potential phase space.
The actual state space of the stochastic process will be denoted by S � R�D.

An example reachability graph assuming that transition t3 is either Erlang(�; 2) 2 PH
or Const(2) 2 DPH and all others are Expo 2 PH is given in Figure 4.1. The states are
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shadowed in a way that distinguishes the RFT information of transition t3 corresponding to
its �ring delay phase.
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Figure 4.1: Markovianized process of the example PDPN.

PDPNs do not satisfy the conditions for isomorphism between the reachability graph
and state space because multiple TD transitions can be enabled and �red simultaneously, a
sequence s 2 (TD [TZ)

�, with the possibility of disabling any or all co-enabled transitions in
a way that prevents their �ring in certain states. Therefore, the construction of the PDPN
reachability graph and the underlying stochastic process must be done in concert. As an
example of how the timing constraints can restrict the reachability graph, consider the case
where t2 � Geom(q; 3), t3 � Const(2), and the other transitions are Expo. The resulting
stochastic marking process is portrayed in Figure 4.2 where the grayed portion indicates the
states that are no longer accessible due to the time constraints. Whereas the sojourn times
in markings (100011) and (000111) are exponentially distributed and therefore memoryless,
this is not the case for the other markings.

In general, the underlying stochastic process of the PDPN is a generalized semi-Markov
process. Although state equations can be constructed, as discussed in Chapter 2, and the
method of supplementary variables applied, the method requires the solution of partial dif-
ferential equations, which is computationally intensive in general. Recall that for MRSPNs,
the restriction that at most one generally distributed transition is enabled in any marking
simpli�es the model to one consisting of ordinary di�erential equations, which are easier to
solve. But, since this restricted marking process is a semi-regenerative process, the supple-
mentary variable can be eliminated altogether by constructing the solution algorithm around
Markov renewal theory.

42



110
001

000
111

010
101

100
011

t2

t2

t1

t1

t3

t3111
000

001
110

011
100

101
010

t2

t2

t1

t1

t4

t3

t3

Figure 4.2: Example non-Markovian process when t2 � Geom(q; 3) and t3 � Const(2).

For PDPNs, we can eliminate the clock variables from the state, thereby reducing the
state-space memory along with the computational costs if we restrict the PDPN so that
synchronization is maintained among all enabled TD transitions. By synchronizing the TD
transitions, the analysis is simpli�ed, subject to only a single clock, thus requiring the storage
of just one clock variable in each state. Even better, the clock variable can be eliminated
altogether for this restricted PDPN by recognizing the underlying stochastic process as a
semi-regenerative process. The conditions necessary for such synchronization in any marking
m 2 R are:

1. transitions t 2 TD are never enabled by a �ring sequence s 2 TCT
�
Z except when

F(m)\TD = ;, and

2. if a �ring sequence s 2 TCT
�
Z resets the current phase of a transition t 2 F(m)\TD

then it must do so for all transitions in F(m)\TD.

Theorem 4.1.1 The stochastic process underlying a synchronized PDPN is semi-regenerative.

Proof. Let X = fX(�) : � � 0 g denote the underlying stochastic process. Clearly, if
only TD transitions are enabled, X is a DTMC, and if only TC transitions are enabled, X is
a CTMC, both of which are special cases of the semi-regenerative class. Consider periods
when both TD and TC transitions are enabled. Because the �ring sequences s 2 (TC [TZ)�

are expanded into Expo and Const(0) state transitions, which are memoryless for all time,
we need only observe the successive times when the TD transitions become enabled, �re,
or undergo phase advancements. Restrictions (1) and (2) ensure that all such events for
di�erent TD are synchronized and therefore occur at successive jump times Tn = Tn�1 + �
at which time state Xn is entered. The sequence of states fXn : n � 0 g form a DTMC,
and together the sequence f(Xn; Tn) : n � 0g forms a Markov renewal process. Therefore it
follows, by de�nition, that X is a semi-regenerative process. 2
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The process shown in Figure 4.2 is semi-regenerative since t2 and t3 maintain synchro-
nization with respect to the basic clock advancements. As such, Markov renewal theory
can be applied to solve the model. While it has been shown that solution algorithms based
on Markov renewal theory has the same asymptotic costs as the method of supplementary
variables [11], we believe Markov renewal theory can be more intuitive in some ways, in-
terpretation of the results to the original process can be preserved, and opportunities to
eliminate phase information from the state can be exploited. But to make Markov renewal
theory applicable, we must impose the above conditions on the PDPN model to ensure that
the underlying stochastic process is semi-regenerative.

4.1.1 Theory Applied to PDPNs in General

We already know that, separately, PH and DPH based SPNs enjoy the eÆcient solution
of underlying CTMCs and DTMCs, respectively. We also know that mixing PH and DPH
behavior requires the solution of a semi-regenerative process, thereby complicating matters.
However, by assuming synchronization between TD transition when enabled and with the aid
of Markov renewal theory, we have reduced the analysis problem to one of studying multiple
CTMCs (the subordinate processes), one for each embedded state in E , and one DTMC (the
EMC). To this end, we must simultaneously study the evolution of both the DTMC and
each CTMC in turn as they interact with one another.

Figure 4.3 shows a sample path observation of a typical PDPN regeneration period aided
by Markov renewal theory. Because isomorphism between the timed and untimed PDPN
reachability graph is not guaranteed and because of the potential interaction between the
DTMC and CTMC models, we take the approach of constructing the stochastic matrix, �,
of the EMC, one row at a time.
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Figure 4.3: Studying a PDPN regeneration period.

44



The basic algorithm to construct� can be as follows. Starting with a known embedded
state i 2 E , we observe the subordinate CTMC (SMC) up to the next clock advance, a
period of at most length � . The regeneration period T1 de�ned here is actually a random
variable over the range (0; � ]. T1 is exactly � if at least one t 2 TD remains enabled during
the entire period. However, if all transitions in TD become disabled or they all are forced to
simultaneously reset to a new �ring delay (resample) due to the �ring of a transition from
TC [TZ , then T1 will be less than � . Assuming that T1 = � , we simply solve the SMC (with
generator Qi and state space Si originating from the embedded state i) at time � . The state
occupied at time � , when the clock advance occurs, is applied to the next state switching
matrix � that computes the set of states reachable after some s 2 (TD [TZ)

� following
the clock advance. This set of next states are new embedded states and are added to E .
This procedure repeats until no new embedded states are found. Formally, the analysis is
expressed by the application of Markov renewal theory with the PDPN properties in mind:

Hik(�) =
h
eQi�

i
ik

(4.1)

�ij =
X
k2Si

h
eQi�

i
ik
�kj (4.2)

where, of course, eQi� is the transient solution of the SMC at time �, one solution for each
i 2 E . Notice that these equations are the same as for DSPNs except that for PDPNs we
have a �xed deterministic delay � . The following equations that are needed for the stationary
solution of PDPNs are the same as well and are repeated here for convenience.

We can distinguish the two cases of fT1 = �g and fT1 < �g by appropriately construct-
ing the SMC. That is, the CTMC states reached that also coincide with TD simultaneous
disabling or resampling are made absorbing and are regarded as embedded states in E . The
set of absorbing states, which are formed in this way, will be denoted hereafter as the set Ei.
In this way, we trap such events and associated probability mass in these absorbing states
when solving the CTMC at time � . If the total probability mass absorbed is �, then because
PrfT1 > � g = 0, we know that PrfT1 < � g = � and PrfT1 = � g = 1� �. For stationary
analysis where we are interested in constructing the EMC matrix �ij = lim�!1Gij(�), the
exact value of T1 is of no consequence, only its expected value is important. With the ap-
propriately constructed absorbing CTMC, the expected value of T1 is determined from the
cumulative probabilities

hik = E[ sojourn in k during [0; T1) jX0 = i ] =
�Z �

0
eQi� d�

�
ik

i 2 E ; k 2 SinEi (4.3)

in each CTMC state, which are computed anyway to obtain the necessary conversion factors.
Then

E[T1 jX0 = i ] =
X
k

hik

for each i 2 E and for all k 2 SinEi.
The stationary solution x = [xi] 2 RjEj of the EMC satis�es the set of balance equations

x� = x subject to
X
i2E

xi = 1: (4.4)
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Because we expect � to be large and sparse, iterative methods like Gauss-Seidel and
successive overrelaxation (SOR) should be employed for the solution of x.

Finally, the stationary solution

pj = lim
�!1

PrfX(�) = j g; j 2 S;

of the semi-regenerative process underlying the PDPN is obtained through the conversion

pj =

P
i2E

xihijP
k2S

P
i2E

xihik
(4.5)

We now investigate in the following sections the analysis of three classes of PDPNs,
de�ned by certain simplifying assumptions, and all having semi-regenerative marking pro-
cesses. The fourth class, discussed last, is actually the PDPN base class with no simplifying
assumptions and an underlying generalized semi-Markov marking process.

4.1.2 Isochronous PDPNs

The most restricted PDPN class we consider is one where we assume that

1. transitions in TD are always synchronized,

2. at least one t 2 TD is enabled at all times, and

3. the clock is never reset by transitions in TC .

These assumptions cause strict synchronous execution that has the same clock period for all
time. Hence, we refer to this restricted class as an isochronous PDPN. The most important
consequence of this \isochronous" execution is that each regeneration period is deterministic,
having a constant duration of � , the basic clock period of all TD transitions. We allow periods
when only TD transitions are active (DTMC only), when both TD and TC transitions are
active (DTMC and CTMC), but not TC transitions alone (CTMC only), as portrayed in
Figure 4.4(a).

Isochronous PDPNs are very convenient since they are accompanied by a �xed timeline
in which to perform time-dependent analysis, which is otherwise too diÆcult. Figure 4.4(b)
portrays an isochronous PDPN sample path with a clocked timeline. Notice that the ex-
pected sojourn time of every embedded state is a constant � . Consequently, the number of
regenerations that can occur in some �xed time � must be given by N = b�=�c. After N
regenerations (jumps), the EMC must occupy the set of states with conditional probability
distribution �N . It follows then that the Markov renewal function can be computed from

R(�) =�b�=�c:

Given state k 2 E occupied after N = b�=�c regenerations, the conditional SMC occupancy
at the residual time u = � �N� can be computed from eQku, and the formulaX

k2E

h
�N

i
ik

h
eQku

i
kj

(4.6)
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for i; j 2 S satis�es the Markov renewal equation (2.19), providing a rather eÆcient and
exact time-dependent solution, Pij(�). Stationary solutions are still easily computed with
the embedding method. The only impact these assumptions have on stationary analysis is
that the SMC will not have absorbing states due to resampling events.

Isochronous

DTMC

CTMC

(a)

clock

τ

embedded 
states

subordinate 
states

time

(b)

Figure 4.4: (a) Characterization and (b) sample path of the Isochronous PDPN.
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4.1.3 Synchronous PDPNs

Consider now a PDPN class that is slightly less restrictive than the isochronous PDPN.
Called a synchronous PDPN, this class is identical to the isochronous PDPN except that
resampling events are permitted. That is, �ring sequences s 2 TCT

�
Z within the SMC may

cause the clock governing TD execution to reset, but such �ring sequences without at least
one t 2 TD enabled is not allowed. The synchronous PDPN can be characterized by Fig-
ure 4.5(a) since clock resets can be thought of as the start of a new DTMC and CTMC
evolution referenced from a new time origin. Although stationary analysis is still easy with
the embedding method, time-dependent analysis is now hard because regeneration periods
may have durations that are less than � by a random amount of time depending on when
the clock resets occur, as portrayed in Figure 4.5(b).

Synchronous

DTMC

CTMC

CTMC

DTMC

(a)

clock

embedded 
states

subordinate 
states

time
τ υ

clock reset  by a 
continuous−time transition

(b)

Figure 4.5: (a) Characterization and (b) sample path of the Synchronous PDPN.
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Time-dependent state equations can be written by considering the mutually-exclusive oc-
casions when the clock is free to advance by amount � and when the clock is reset. Beginning
with the Markov renewal equation (2.19), we can let

Gik(�) =

8>><
>>:
P
`2Si

h
eQi�

i
i`
�`k i; k 2 E when the clock advances;

h
eQi�

i
ik

i 2 E ; k 2 Ei when the clock resets

and substitute Hij(�) with the conditional SMC solution given by Equation 4.1 for the
residual time less than � , which serves as the boundary condition that stops the recursion.
This yields the recursive state equation

Pij(�) =
X
k2E

X
`2Si

h
eQi�

i
i`
�`kPkj(� � �) + clock advances

X
k2Ei

Qi

�Z
0

h
eQi�

i
ik
Pkj(� � �) d� + clock resets

h
eQi�

i
ij
1fj2Sig

�
1� 1(� � �)

�
stop (4.7)

de�ned as such for i; j 2 S, � � 0 and equal to 0 otherwise. The indicator function 1fj2Sig
returns 1 if j 2 Si and 0 otherwise.

Writing time-dependent state equations is one thing, but �nding eÆcient ways to solve
them is another. Whether we attempt this in the time domain or the s-domain by using
the Laplace transform, the outcome is the same for anything other than toy models: the
time-dependent solution is diÆcult and computationally intense.

4.1.4 Mixed PDPNs

The restricted PDPN classes presented in the previous two sections assume that at least
one transition from TD is enabled in all reachable markings. This implies that a clock and
a DTMC aspect of the model are always present. When this is not the case, we can say
that the PDPN is asynchronous in the sense that transition �rings are not always, if at all,
synchronized with a clock. Instead, there would only exist a CTMC aspect due to �ring
sequences s 2 (TC [TZ)�, which can occur along a continuous timeline. Certainly, we can
think of a PDPN when only transitions in TC are enabled as asynchronous in the current
context.

So let us now consider a PDPN that is synchronous at certain times and asynchronous
at other times, referred to as a mixed PDPN. A mixed PDPN is a restricted class of PDPN,
having the same properties as a synchronous PDPN except that all transitions in TD may be
disabled at times, as characterized by Figure 4.6(a). Still, interestingly enough, stationary
analysis is just as easy, and time-dependent analysis is just as hard as with synchronous
PDPNs.

Referring to a sample path portrayed in Figure 4.6(b), notice that during periods when
only transitions in TC are enabled, the EMC can be considered identical to an embedding of

49



Mixed

CTMC

DTMC

CTMC

DTMC

(a)

clock

embedded 
states

subordinate 
states

time
τ υ

clock reset

χ

discrete−time transition s
disabled

(b)

Figure 4.6: (a) Characterization and (b) sample path of the Mixed PDPN.

the active CTMC. Similarly, the EMC is identical to the active DTMC when only transitions
in TD are enabled. Alternatively, we could observe a di�erent EMC, one that skips over such
periods of inactivity of either TD or TC transitions. More will be said later about alternative
embeddings.

The time-dependent state equations for the mixed PDPN is the same as for the syn-
chronous PDPN with the minor addition: the transient solution of a CTMC associated with
transition �rings s 2 (TC [TZ)� in isolation. The probability that a state transition from i
with total outgoing rate �i does not occur|hence, the CTMC remains in the current state
i|is given by

Hij(�) = e��i�Æij i; j 2 S

where the unit delta function Æij is equal to one for i = j and zero otherwise. By embedding
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the CTMC, we can compute

Gij(�) =
�ij
�i

�
1� e��i�

�

and thus

dGij(�) = �ije
��i�d� i; j 2 E :

So the state equations for mixed PDPNs are given by Equation 4.7 for states i where at least
one t 2 TD is enabled, and

Pij(�) = e��i�Æij +
X

k2Snfig

�Z
0

�ike
��i�Pkj(� � �) d� i; j 2 S (4.8)

for states i 2 S where only transitions in TC are enabled, de�ned for � � 0 and equal to 0
otherwise.

4.1.5 Asynchronous PDPNs

The previous PDPN classes maintain synchronization among transitions in TD when enabled.
The base class of the PDPN does not have this nor any other restriction. Without simplify-
ing assumptions, the PDPN may have multiple DTMC executions or embedded processes,
evolving simultaneously and unsynchronized with skewed timelines relative to each other. Of
course, there may also be times when only DTMC or CTMC execution is present. This full
generality is indicative of the PDPN base class, as portrayed in Figure 4.7(a), and referred
to as an asynchronous PDPN.

Transitions in TD become unsynchronized when there is at least one transition in TD
enabled and

1. a �ring sequence s 2 TCT
�
Z causes one or more previously disabled transitions in TD to

become enabled without disabling some of the currently enabled transitions in TD, or

2. when a �ring sequence s 2 TCT �
Z causes some but not all enabled transitions in TD to

resample a new �ring delay.

In both cases, a new clock sequence will start that is out-of-sync with the current clock.
Firing sequences s 2 (TD [TZ)� never pose a problem since any enabling or resampling
events they cause would be synchronized with the clock. But the continuous-time nature
of TC transitions means that the probability of any t 2 TC �ring in-sync with the clock is
zero. So the �ring of any t 2 TC or any immediate transition following t that causes (1)
or (2) above to happen will be followed by unsynchronized execution. However, once the
PDPN becomes unsynchronized, it does not necessarily have to stay that way. All transitions
in TD may be either disabled, thereby eliminating the multiple clocks altogether, or forced
to resample simultaneously, thereby allowing the synchronized execution to resume. Such
examples are illustrated by the sample path shown in Figure 4.7(b).

Referring to Figure 4.7(b), notice that during the period of unsynchronized execution,
there is an extended sojourn in the embedded state entered prior to the unsynchronizing
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Figure 4.7: (a) Characterization and (b) sample path of the Asynchronous PDPN.

event. This is because regeneration points are typically rare, too diÆcult to determine,
or, more likely, do not even exist during unsynchronized execution. So for asynchronous
PDPNs, we may have a diÆcult time recognizing the underlying stochastic process as being
semi-regenerative. At the very least, the subordinate process during unsynchronized execu-
tion will be much harder to solve. Consequently, even stationary analysis of asynchronous
PDPNs is diÆcult. Without the aid of simplifying properties or assumptions, we will have to
consider the underlying process to be a generalized semi-Markov process. As such, we might
resort to the method of supplementary variables or �xed-interval observations for exact so-
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lutions, or estimations derived from simulation. Unfortunately, these methods can be too
computationally intensive. We plan to investigate, instead, approximation methods for both
stationary and time-dependent solutions that are eÆcient and o�er acceptable accuracy.

4.2 PDPN Stationary Solution Algorithm

The formalization and mathematical modeling of PDPN behavior has been developed in
the previous sections. It should be clear to the reader that transient analysis of PDPNs
other than the isochronous class is diÆcult while stationary analysis of those other than the
asynchronous class is relatively easy. So, exact methods will mostly be sought for stationary
analysis and approximate methods will be sought for transient analysis. We save the devel-
opment of approximate solutions for the remaining research, outlined later in Chapter 5. We
will now propose in this section eÆcient stationary solution algorithms that stem from our
preliminary research, but �rst, some important issues will be discussed.

Given that the stochastic process state space generated by a high-level formalism like a
Petri net already su�ers from exponential growth, the combinatorial growth introduced by
phase-type, state-space expansion only exasperates the problem. There are at least three
ways to alleviate the state-space growth problem: 1) distributed computing, 2) compact
state-space storage techniques, and 3) alternate embedding strategies. Of course, these
strategies may also reduce computation time as well. Regarding the �rst, much of the work
to solve a PDPN can be shared among multiple computers. This is especially true for the
solution of each SMC, which can be done in parallel with little or no communication or
synchronization. As for the second, we anticipate signi�cant reductions in memory require-
ments by employing decision diagrams like those in [39] and [42]. But what impact these
novel data structures have on computational e�ort remains unknown until we incorporate
the data structures into the PDPN solution algorithms. Finally, in the third, we observe
that the solution complexity of the EMC and SMCs depends a great deal on how regen-
eration points are sampled. That is, what sampling, or \embedding", should be used to
balance the e�ort between the many SMC solutions and the one EMC solution? Because
the �rst two options seem to be more straightforward than the latter, we will spend more
time investigating alternate embedding strategies in this section.

Before continuing, we should address the subject of execution policies, and how speci�c
policies, namely, resampling, enabling memory, and age memory, may in
uence the choice
or applicability of a particular solution method. It so happens that execution policies do
not a�ect the applicability of the solution methods discussed in the next section for states
that cause a mutually-exclusive enabling of transitions in TD or TC . The nuances of each
policy on transitions in TD or TC , separately, is imparted into the DTMC or CTMC matri-
ces, respectively, during construction. For the same reason, the e�ect that �ring sequences
s 2 (TC [TZ)� have on the phases of other transitions in TC enabled with transitions in TD
also pose no problems|the e�ects are included by construction. Nor is there a problem
with execution policies imposed on transitions as a result of �ring sequences s 2 (TD [TZ)�

since the e�ects are imparted by the switching matrix when constructing the embedded
states for the new regeneration periods|the analysis of which are separate from the current
regeneration period. However, the execution policies can a�ect the applicability of a partic-
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ular solution approach under certain other situations when transitions from TD and TC are
enabled simultaneously.

Let us consider then the regeneration periods when transitions from both TD and TC are
enabled. If any t 2 TD is speci�ed with the resampling execution policy, enacted as a result
of some sequence s 2 TCT �

Z , then to maintain synchronization, all other transitions in TDnftg
enabled in the new marking must also resample a new �ring delay. As previously discussed,
such events are captured simply by appropriately constructing the SMC with absorbing
states, entered when resampling occurs, and regarded, rightly so, as embedded states. If, in
the extreme, all t 2 TD are forced to resample as a result of any transition �ring, each SMC
would consist of a single state leading to (embedded) absorbing states, and consequently, we
could enjoy closed-form expressions for associated EMC entries. Unfortunately, such models
do not occur often in practice.

When an enabling-memory execution policy is imposed on an enabled transition t 2 TD,
enacted as a result of some sequence s 2 TCT �

Z , the phase of t does not advance at the next
clock increment and t must resample a new �ring delay when enabled once again in the
future, or even if still enabled in the new marking. While disabled, t is assigned phase \�".
The enabling-memory policy is as convenient as the resampling policy because the phase of
a transition can advance as long as it is enabled, and when it is not enabled, we know with
certainty that its phase is \�".

When an age-memory execution policy is imposed on an enabled transition t 2 TD,
enacted as a result of some sequence s 2 TCT �

Z , the phase of t does not advance at the
next clock increment, yet it retains its current value. From a modeling perspective, the
work expended right up to the time of preemption is retained for t 2 TC with age memory.
However, age memory is only approximately modeled with DPH transition because of the
discretization in the basic step. For t 2 TD with age memory, only the work expended since
the last clock increment is lost, not the work performed before then. But the approximation
to a true age-memory execution improves as the �ring delays become large relative to the
clock period � . From a solution perspective, age-memory policies usually require more
computational e�ort and memory. The phase of an age-memory transition can advance for
as long as it is enabled before �ring, but we must remember its phase at the time when it
becomes disabled. Then, the phase advancements can resume from the same point when the
transition is enabled once again.

In the remaining text, we consider improvements to the straightforward stationary solu-
tion method presented up to now, which advances the discrete-time phases one basic step,
� , at a time. Instead, our proposed algorithm attempts to advance the discrete-time phases
ahead in increments larger than the basic step size, when no t 2 TD can �re, and even
further along in time while recording �ring opportunities until all �ring opportunities are
discovered. However, when transitions in both TD and TC are enabled simultaneously, the
method is somewhat di�erent. The initially presented solution method allows transitions
with any of the previously mentioned memory policies. However, for regeneration periods
where the enabled DPH transitions are not marking dependent and do not have age memory
then a slightly di�erent, more eÆcient procedure can be employed. After motivating and
developing the solution methods in this section, we later present in Section 4.2.3 procedures
that realize the solution methods along with the procedures that are applicable when only
transitions in TD or TC are enabled.
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The PDPN solutions we seek, such as the state-occupancy probability distribution, need
only span the unique markings in R. But while obtaining this solution, we must contend
with the expanded state space, S � R�D, resulting from the Cartesian product of the
marking space and phase space. Because of the nature of phase-type �ring delays, there
will be many states in S that serve only to provide delay information, not unique marking
information associated with actual transition �rings. It would then be desirable to consider
the expanded state space in a smart way, in hopes of eliminating as many \delay" states
as possible. Ideally, we would like to choose an embedding that reduces the size of the
embedded state space E to one that closely approaches the reachable set of markings, R. In
addition to reducing the memory requirements, a reduced E set can have a signi�cant e�ect
in the per-iteration complexity and the convergence rate when computing the stationary
solution of the EMC. To this end, we propose a new embedding technique that observes
the PDPN stochastic process at regeneration times that coincide with actual PN transition
�rings as much as possible, thereby eliminating as many \delay" states as possible. We call
this technique embedding with elimination.

The technique is straightforward when only TD or only TC transitions are enabled. In
such cases, the problem of studying the SMC becomes a TTA problem discussed in Chapter 2
instead of the usual transient solution discussed in section 4.1.1. However, when transitions
from both TD and TC are simultaneously enabled, the technique becomes more complicated.
While the costs associated with studying the SMCs can change, for better or worse depending
on the model, we predict that the reduction in the EMC solution will net an overall cost
reduction in many cases. The technique will be developed in detail in the remaining text of
this section, culminating into a stationary solution algorithm presented at the end.

In the following, we denote EMC states as the tuple (i; a). The \i" part identi�es just
the PN marking if only Expo transitions are enabled; otherwise, i identi�es a state composed
of the marking and continuous-time phase information of the expanded CTMC. The \a"
part identi�es the discrete-time phase information (the RFT) associated with transitions in
TD other than Geom(�; 1) and Const(1). RFT state information for Geom(�; 1) and Const(1)
is unnecessary since Geom(�; 1) is memoryless and Const(1) has only a one-step duration
within a given state. Distinguishing the phase values \1" and \�" can be done, instead,
based on F(�) membership. Explicit consideration of continuous-time phase information is
not needed since the PH behavior is just expanded into a larger CTMC, the solution of which
is the same. That is, whether there are PH transitions or just Expo transitions does not
a�ect the analysis; it only enlarges the SMC state space. The information that is essential
to the analysis is the state of the SMC (the i part) and the state of a DTMC (the a part),
de�ned on the applicable discrete-time phase space. We analyze the DTMC and CTMC
components in concert to construct the EMC.
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4.2.1 Embedding with Elimination

The PDPN stationary solution algorithm based on Markov renewal theory can be summa-
rized in following steps:

1. Explore from some known embedded state (i; a) 2 E .

2. The stochastic matrix specifying the EMC can be constructed one row at a time by
studying the regeneration period (the time until the next regeneration point) de�ned
for each embedded state (i; a) on which it depends.

3. Each regeneration period is studied by performing a transient analysis on the SMC
that evolves between regeneration points in time.

4. There are three possible regeneration period cases to analyze:

� DTMC (only t 2 TD enabled),

� CTMC (only t 2 TC enabled), or

� DTMC interacting with a CTMC (transitions enabled in both TD and TC)

5. Repeat for each newly discovered embedded state until no others are found.

6. Solve the EMC for its stationary solution, Equation 4.4

7. Obtain the stationary solution of the actual semi-regenerative process by conversion,
Equation 4.5, with expected sojourn times in SMC states for each regeneration period,
Equation 4.3.

The regeneration period is characterized by the embedded state (i; a) 2 E entered at
the time of regeneration and from which the period emanates. The \i" part alone can
uniquely identify the SMC since it is from state i that the reachability graph with state
space Si evolves as a result of �ring sequences s 2 (TC [TZ)

�. The in�nitesimal generator
matrixQi is then constructed from the reachability graph. The state of \a" does not change
until the next clock increment; it can be set aside and later re-attached to the SMC state
at the next regeneration point when the appropriate �ring sequence s 2 (TD [TZ)� are
applied to discover the next set of embedded states. Let us now consider the three possible
regeneration periods characterized by having DTMC only, CTMC only, or both DTMC and
CTMC dynamics.

� The DTMC only case. We could employ a single-step approach, observing regener-
ations every � units of time so that the DTMC de�ned on the phase space Da (the set of
phases reachable from a) of transitions in TD is identical to the EMC. Then we have the nice
property that E[T1 jX0 = (i; a) ] = � , a constant.

The state of i does not change between steps and is, therefore, implied instead of explic-
itly stored in the DTMC state space. But this approach would also capture state transitions
in the EMC that only change the discrete phase, not the marking. Thus, we consider this
approach potentially ineÆcient.

We could take the previous approach a bit further by observing regenerations at times
when there is at least one state where some t 2 TD can �re. This approach was discussed
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in [5]. Here the EMC would be identical to a discrete-time semi-Markov chain where the
sojourn times in states would not be constant. This has the potential of reducing a number
of the � transitions (phase change only) from the EMC, but when DPH �ring delays with
sel
oops and circuits are present, e.g., Geom distributions, there will still be state transitions
(and therefore extra states) where only the phases change.

A better approach would be to observe the DTMC at times when the �ring of some
t 2 TD is certain. This approach eliminates all � transitions from the EMC. The DTMC is
de�ned only on the phase space Da. The random variable T1 is de�ned as the TTA of the
DTMC with the �re-enabling, \0 phase" states treated as absorbing states.

Even better, we might observe the DTMC at times when the �ring of some t 2 TD results
in a new marking that enables some u 2 TC is certain. Regenerations at these random times
T1 are marked by the start of a CTMC. This approach not only eliminates all � transitions
from the EMC, but also skips over state changes that could just as easily be studied in
the SMC constructed as a discrete-time semi-Markov chain (as opposed to the EMC that
will be solved for its stationary solution later). Removing these states/transitions from the
EMC will reduce the per iteration cost when computing the EMC stationary solution with
an iterative method and should improve the convergence rate as demonstrated in [43] due to
the smaller state space E . We will discuss the convergence rate in more detail in Section 4.3
where we analyze our proposed solution algorithm. The random variable T1 is de�ned here
as the TTA of the DTMC with the TC-enabling states treated as absorbing states.

� The CTMC only case. We could employ a similar single-step approach here as well,
observing regenerations at times immediately after each state transition, as proposed in the
literature for DSPNs. This implies that E[T1 jX0 = (i; a) ] would be the expected sojourn in
CTMC state (i; a). Although the (i; a) row calculation of the EMC would have a closed form,
this savings could easily be lost in general when it comes time to compute the stationary
solution of the much larger EMC. If the CTMC has an expanded state space due to PH �ring
delays, then we have, again, the same ineÆciencies as for the single-step approach in the
DTMC only case. The remedy is the same as well. That is, we could observe the CTMC at
times when the �ring of some t 2 TC is certain. Such an approach eliminates � transitions
from the EMC that only update the continuous-time phase information. Consequently, the
random variable T1 is de�ned as the TTA of the CTMC with the 0-phase states treated as
absorbing states, just as in the related DTMC only case.

But again, as in the DTMC only case, a better approach might be to observe the CTMC
at times when the �ring of some t 2 TC results in a new marking that enables some u 2 TD.
Regenerations at these random times T1 are marked by the start of a DTMC. This approach
also eliminates all � transitions from the EMC, and skips over state changes that could just
as easily be studied in the SMC constructed as a continuous-time semi-Markov chain. And,
removing these states/transitions from the EMC will also reduce the per iteration cost when
computing the EMC stationary solution with an iterative method and should improve the
convergence rate. The random variable T1 is de�ned here as the TTA of the CTMC with
the TD-enabling states treated as absorbing states.

� Both DTMC and CTMC case. Here, the underlying process is semi-regenerative,
formed from the interdependent, simultaneous evolution of the DTMC and CTMC associated
with the transitions in TD and TC , respectively. Although a CTMC is memoryless for all
time, we must nevertheless observe the process in-sync with the TD clock advancements
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due to the possible interaction between the DTMC and CTMC. If we employ a single-step
approach here as well so that regenerations are observed every � increment in time, the
subordinate process will be identical to the CTMC and the EMC can be constructed by
solving the CTMC in the transient at time � . The next embedded state is obtained by
incrementing the clock and then applying the resulting CTMC state probability vector to
the switching matrix � of possible state changes due to �ring sequences s 2 (TD [TZ)�.

The DTMC aspect is de�ned on the discrete-time phase space only, which does not
change between clock increments. Therefore, the \a" part of the state is implicit and is
not included in the construction of the SMC states occupied between clock increments.
The expectation E[T1 jX0 = (i; a) ] is equal to � , a constant, for isochronous PDPNs only;
transitions in TD may be preempted in all other classes, causing E[T1 jX0 = (i; a) ] to be
less than � . Just as in the previous single-step approaches in both the DTMC only and
CTMC only cases, this approach will also capture � transitions in the EMC, both discrete-
and continuous-time phase changes. Worse, the embedded states at each step are formed
from the Cartesian product of possible next states originating from CTMC states occupied
at time � and the possible next phases reached after the clock advance and, if transitions
�re, after execution policies are applied. This approach can expand the size of the EMC in
a serious way, and therefore, we consider it very ineÆcient.

To illustrate, consider our running example for yet another set of timing constraints
speci�ed in Figure 4.8. Figure 4.9 illustrates how the EMC would evolve from state

(m1m2m3m4m5m6�1�2) = (11100032) 2 E

if the actual (semi-regenerative) process was observed using this single-step approach. Note
that phase information (�1�2) for only transitions t1 and t2 is needed, which is shown in
the larger circle o�set from the marking information contained in the smaller circle. The
SMC shown to the right is associated with the upper row of states, which enables the Expo
transition t3. The dotted arc labeled t3 signi�es that the sojourn time in state (001110 � �)
is exponentially distributed, unlike the other states, which have constant � sojourn times.

Starting from (i; a) 2 E , we observe that between clock increments, the process can
move like (i; a)

s
�! (k; a) where s 2 (TC [TZ)� and k 2 Si with probability one. Although

the CTMC may disable transitions in TD during this interval [0; �), we need not consider
this change to the discrete-time phases until the next time the clock advances; hence, \a"
is considered unchanged until then. Also, in one clock step, the EMC may move between
embedded states like (i; a)

s;�
�! (k; b), where (i; a); (k; b) 2 E , k 2 Si, s 2 (TC [TZ)� and no

t 2 TD �res (denoted by �). In such cases, we know that

Prf (i; a)
s;�
�! (k; b) g = Prf i

s
�! k in time � g � Prf a! b in one clock step g

and by summing (and e�ectively lumping) over all states k 2 Si we have the result

Prf (i; a)
�
�! (Si; b) g = Prf a! b in one clock step g:

Therefore, we can avoid the Cartesian product of CTMC states with the discrete-time
phase information along sample paths with � transitions by combining all CTMC states with
the same discrete-time phase component into a single state as illustrated in Figure 4.10,
where the arcs correspond to EMC state transitions only.
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Figure 4.8: Example model.
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Figure 4.9: Single-step EMC model.

But, this method is most bene�cial when we can study such regeneration periods over
the entire possible range of T1. More speci�cally, it is preferable to return to Equation 2.23
and replace dPrfT1 � � jX0 = (i; a) g with the pmf derived from the �ring time of any
DPH transition enabled during the regeneration period. This pmf can be computed while
concurrently advancing the stochastic matrices Dt, which de�nes the �ring-delay of each
enabled t 2 TD, until any one of the transitions can �re with nonzero probability.

Suppose ~T � TD is the set of DPH transitions enabled in the starting state (i; a) 2 E .
Then ~T is the largest set of enabled DPH transitions over the regeneration period de�ned by
embedded state (i; a). One or more t 2 ~T may be disabled during the regeneration period
but not re-enabled. Nor can any other transition t 2 TDn ~T become enabled; otherwise, the
model would violate the conditions that insures a semi-regenerative process. Let �t denote
the probability vector of phases for each enabled t 2 TD that requires phase information.
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Figure 4.10: Reducing the EMC.

The vector 1�, indicating that the phase is \�" with probability one, and zero for all other
phases, can be substituted in place of �t for t 2 TDn ~T , which are not enabled. For each
u 2 ~T , �u is initialized to 1o for some appropriate phase \o" so that the Kronecker product,

t�

t, 8 t 2 TD, corresponds to the phase vector identi�ed by \a". Then starting from the
initial phase at time 0 (the start of the regeneration period), the respective phases at time
step � = n� , n 2 N , can be computed using the power method,

�t(�) = �t(� � �)Dt;

until at least one t 2 ~T is ready to �re; that is, its phase is zero and it is enabled in the
CTMC state, k, occupied at time �:

9 t 2 ~T : �t0 > 0 ^ t 2 F(k):

Of course, more than one transition in ~T may be able to �re at the same time.
Accordingly, the random variable T1 can take on any such value of � that coincides with

a nonzero probability of some t 2 ~T �ring given that X0 = (i; a). The conditional pmf of T1
is then the probability of entering all such �ring states over an interval that accumulates a
total probability mass of one, or at least close enough for practical purposes. The full state
vector and associated probability mass at the time when a �ring can occur, is determined by
appropriately combining the probabilities of the CTMC states with that of the discrete-time
phases. CTMC states, k, and associated probabilities, �k, that enable transitions in ~T , can
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be combined with the new phase vectors which result from incrementing the clock, except for
the transitions t 2 ~T that can now �re: these phase components must be set to �t

0, a vector
with the 0th element equal to �t0 and all other elements equal to zero. The respective phase
component of transitions in ~T not enabled in the same CTMC states are set to �t�. The
probability mass for each such �ring event found must then be discarded before incrementing
the clock forward in time in search of the next �ring event. In this way, the probability mass
associated with each of the states allowing transitions in ~T to �re will form a conditional
pmf for T1 and will equal one when summed together.

In general, the DTMC aspect of our model may be a�ected by the SMC evolution, the
CTMC aspect. State transitions in the CTMC that cause the enabled DPH transitions to
resample is one way. But these e�ects are easily taken into consideration by treating the
CTMC states entered from such transitions as absorbing states. As previously discussed, the
resampling events and probabilities are then trapped and the absorbing states are considered
as embedded states, members of set Ei presented earlier, thereby concluding any further
consideration along such sample paths. For later reference, we let set Ei contain all such
absorbing states. Another possible e�ect on the DTMC behavior comes from the disabling
of DPH transitions as the CTMC evolves. This implies that the advancement of each Dt

over time is conditioned on t 2 ~T being enabled at the time of each clock increment, a
function of the CTMC state occupied at such times. In the extreme, there may exist CTMC
states that disable all transitions in ~T . These CTMC states would be made absorbing when
constructing the CTMC since they can also be considered embedded states. Consequently,
these absorbing states too are made members of Ei. Finally, the DTMC may be marking
dependent, and therefore depend on the state of the CTMC at each clock increment. That
is, the phase advancements are conditioned on the state of the CTMC at the time of each
clock advance. In such situations, the CTMC must be solved �rst at time � so that the
discrete-time phases can be advanced based on the state of the CTMC.

When constructing the state vectors and associated probability mass for each t 2 ~T
�ring opportunity at some time �, we must be sure to combine the discrete-time phase
vector associated with the �ring, as previously de�ned, with the state probabilities k 2 Si
in which the discrete-time phase is valid. Let us suppose that TD = ft1; t2; : : : ; tjTDjg. Then,
by de�ning

 t
k =

8<
:�

t
0 if t 2 F(k) ^ �t0 > 0

�t otherwise

where �t
0 = [�t0; 0; : : : ; 0], the complete �ring state and associated probability mass is deter-

mined from

X
k2Si

�k 
  
t1
k 
  

t2
k 
 � � � 
  

tjT
D

j

k

where �k is a vector of all zeros except for the kth entry, which is �k instead.
The CTMC must be observed at times coincident with the clock increments to ensure

that all DPH transition �ring opportunities can be discovered and carried out along the way
in case the outcomes happen to modify the CTMC speci�cation. During the regeneration
interval of interest, the CTMC can change only as a result of t 2 ~T �rings, not by mere
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phase advancements. By devising a procedure that computes the conditional pmf for T1
�rst, setting aside the consideration of the t 2 ~T �rings, we are certain that the CTMC is
the same while incrementing the clock in search of more t 2 ~T �ring opportunities.
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Figure 4.11: Multi-step observation example.

Consider the example PDPN in Figure 4.8 except assume t1 � Geom(�; 3) and t2 �
Const(2). Figure 4.11 shows the DTMC evolution given the initial state

(m1m2m3m4m5m6�1�2) = (11100032):

Using our multi-step approach, with ~T = ft1; t2; t3g, we would stop at time step 2�
since here the probability of observing the �ring of a transition t 2 ~T is one. In this case,
t2 �res and we must explore the grayed portion starting from the embedded state reached
as a result of the �ring. The EMC originating from state (i; a) is portrayed in Figure 4.12.
Although there is only one possible next phase, the process can be in any of the two CTMC
states when the clock advances, thereby resulting in two possible next states. The expected
sojourn time in (i; a) is 2� .

Again, consider the running example except that now we assume t1 � Geom(�; 3) and
t2 � Geom(�; 2). Figure 4.13 portrays the exploration of the DTMC on the phase space
starting from the same embedded state as before, and shows the resulting, conditional pmf
for T1 when � = 0:4 and � = 0:2 out to 8 clock steps. The probability mass beyond 8�
diminishes quickly to zero. In this example, we need not stop at time step 2� since the
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probability of observing the �ring of a transition t 2 ~T (t2 again) is � < 1. If we stop the
construction of the EMC row (i; a) at this point, we would have entries for (�1�2) = (12)
which would have to be explored in other EMC rows. So if we need to explore from phase
vector (�1�2) = (12) anyway, we may as well do it while building row (i; a). This way, the
intermediate \delay" states are eliminated from the EMC, potentially a real advantage when
it comes time to compute its stationary solution.
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Figure 4.12: Multi-step EMC model.
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4.2.2 Conversion Matrix

Before presenting the stationary solution algorithm developed from the previous investiga-
tion, we should consider the matter of converting the stationary solution of the EMC to that
of the actual process. Recall that the conversion matrix, h = [hik], i 2 E , k 2 Si, de�ned as

hik = E[ sojourn in k during [0; T1) jX0 = (i; a) ];

is usually a real matrix of dimension jEj � jSj. However, if this mapping is utilized, the
probability distribution over states i 2 E would be redistributed onto all reachable states,
including those reached via � transitions. In other words, the stationary solution vector of
the actual semi-regenerative process would contain every state i 2 E and every state k 2 Si
reachable between regenerations. This mapping to such a large solution vector would be
memory ineÆcient, causing a loss of some of the bene�t obtained by eliminating the extra
\delay" states during the regeneration period studies. Obviously, in the end, all we wish
to know is the probability distribution among the unique reachable markings within R, on
which most measures (other than impulse rewards) are de�ned.

Of course, we can simply compress the solution vector by accumulating the probabilities
of states with the same marking, but di�erent RFT content, into a single, lumped state.
However, waiting until the end to do this is too late since we have already consumed the
memory with the large conversion matrix.

Alternatively, we can employ the measure-based technique presented in [44] that \dis-
tills" the rewards � of all states into rewards for the embedded states alone. In this way, we
need not store a conversion matrix at all, only vectors of size E . But, this technique has the
disadvantage in that the results are limited to just the rewards de�ned when the solution is
computed.

We could instead avoid some of the memory ineÆciency while still allowing for the
storage of a probability vector that does not limit the measures that can be computed from
it later by utilizing a conversion matrix on E �R, which maps to the set of unique reachable
markings. This can be done during the study of each regeneration period, which constructs
a row of the EMC. We simply accumulate the expected sojourn times of SMC states with
the same marking together. If the conversion matrix h is still too large to keep in memory,
we can at least �nd solace in knowing that h is constructed one row at a time and is used
just once at the end. Therefore, the h matrix can be cached to disk if necessary, and only
a minor performance impact should be observed because of the sequential construction and
later recall of its entries [45].

�We refer to the rate rewards, quantities �i 2 R accumulated during the entire time state i 2 S is occupied
and are usually de�ned on markings at the net level.
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4.2.3 Presentation of the Algorithm

This section proposes a stationary solution algorithm applicable to PDPNs with underly-
ing semi-regenerative processes. We assume that the PDPN model is restricted to one of
the classes: isochronous, synchronous, or mixed PDPN. Checks can be made during the
construction and analysis of the underlying stochastic process to ensure that it is indeed
semi-regenerative; however, those checks are omitted here for the sake of clarity. Checks
on the PDPN incidence matrix may be investigated in the future that would ensure that
transitions in TD maintain synchronization during execution. In this way, examination of
the PDPN model itself would determine which solution algorithm is appropriate. This so-
lution algorithm realizes the \embedding with elimination" method presented earlier. We
have decomposed the overall solution algorithm into four parts: the main algorithm and the
three procedures SolveBoth, SolveDTMC, and SolveCTMC, which consider the three
possible solution approaches as outlined in Section 4.2.1.

The main algorithm (4.2.1) is responsible for exploring and building the embedded state
space E by analyzing each regeneration period that originates from known embedded states,
constructing the EMC probability matrix� one row at a time, and placing newly discovered
embedded states in U for later consideration. The algorithm calls one of the three procedures
in turn to perform the actual analysis of each regeneration period. The conversion matrix h is
constructed within each of the three procedures. After constructing the EMC and computing
its stationary solution, the stationary probability distribution of the actual process with state
space S is �nally computed using h. The state space S is implicitly constructed during this
conversion.

Some comments should be made before proceeding. First, note that in Algorithm 4.2.1,
i itself is assumed to represent both marking and phase (PH and DPH), but in the proce-
dures that follow, i may represent only a component of the state: either the marking and
continuous-time phase information or the marking alone, as discussed in the beginning of
Section 4.2. The semantics will be made clear in each case to avoid confusion. Notice also
in Algorithm 4.2.1 that the parameter to the set of enabled transitions, F , is a state, con-
sisting of marking and phase information, instead of just a marking as previously de�ned.
Of course, only the marking information is considered when constructing the set. Second,
the switching matrix �, used explicitly in procedure SolveBoth and implicitly in proce-
dure SolveDTMC should be de�ned using the Traverse algorithm presented in [24] for
DDSPNs. Constructing � using the Traverse algorithm ensures that the PDPN model
is \well de�ned" with respect to contemporary transition �rings. Third, in the Solve-
Both procedure, we use an extended version of the switching matrix � de�ned earlier.
The extended version considers the �ring outcome of multiple transitions on a given set of
markings instead of the �ring outcome of just one transition. In this way, given a probability
distribution of states that enable di�erent sets of transitions, the multiple outcomes from
simultaneously �ring all such enabled-transition sets can be determined in a single step.

The procedures SolveDTMC and SolveCTMC are much alike. They analyze regen-
eration periods when only a DTMC or CTMC exist, respectively, following the \embedding
with elimination" approach of Section 4.2.1. Consequently, the procedures consider states
within the subordinate DTMC or CTMC that change the situation to an interacting DTMC
and CTMC, from a DTMC to a CTMC, or vice versa. Such states, referred to as \stopping
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states", are by de�nition embedded states. The \stopping states" are treated as absorbing
states and the vector ~� of expected times in the nonabsorbing states until absorption into an
embedded state is computed. Then, the probability �ij of transitioning from the embedded
state i, entered at the start of the regeneration period, to one of the next embedded states
j, marking the next regeneration period, can be computed from ~�. This method eliminates
all states other than the absorbing ones from the EMC, which would otherwise be included
if the EMC were observed after each state transition during the same period.

Algorithm 4.2.1 PDPN stationary solution algorithm

1: E  ; set of embedded states

2: Let � 2 RjEj�jEj where �ij = PrfX1 = j jX0 = i g EMC matrix

3: Let U contain known embedded states set of unexplored states

4: while U 6= ; do
5: Choose and remove i 2 U and place in E construct row i of �

6: if F(i)\TC = ; then DTMC only

7: SolveDTMC

8: else if F(i)\TD = ; then CTMC only

9: SolveCTMC

10: else both DTMC and CTMC

11: SolveBoth

12: end if

13: Place in U all j not already in E [U such that �ij > 0

14: end while

15: Solve x� = x subject to
P
i2E

xi = 1 stationary solution of EMC

16: Compute the stationary solution pj  lim
�!1

PrfX(�) = j g; j 2 S from

pj  

P
i2E

xihijP
k2S

P
i2E

xihik
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Procedure 4.2.2 Regeneration period solution for DTMC only case

procedure SolveDTMC is

1: Construct stochastic matrix ~� of the expanded DTMC
by applying �ring sequences s 2 (TD [TZ)� starting from (i; a) 2 E � R�D
until stopping states are reached that enabled some t 2 TC ;
Make the stopping states in ~� absorbing.

2: Solve ~�(I� ~�) = 1(i;a)

3: for all (k; c) elements of ~�, k 2 R, c 2 D, do
4: h(i;a)k  h(i;a)k + ~�(k;c)

5: for all (j; b) such that F(j)\TC 6= ; do
6: �(i;a)(j;b)  �(i;a)(j;b) + ~�(k;c) � Prf (k; c)! (j; b) g
7: end for

8: end for

Procedure 4.2.3 Regeneration period solution for CTMC only case

procedure SolveCTMC is

1: Construct generator matrix ~Q of the expanded CTMC
by applying �ring sequences s 2 (TC [TZ)� starting from (i; a) 2 E � R�D
until stopping states are reached that enabled some t 2 TD;
Make the stopping states in ~Q absorbing.

2: Solve ~� ~Q = �1(i;a)

3: for all (k; c) elements of ~�, k 2 R, c 2 D, do
4: h(i;a)k  h(i;a)k + ~�(k;c)

5: for all (j; b) such that F(j)\TD 6= ; do
6: �(i;a)(j;b)  �(i;a)(j;b) + ~�(k;c) � ratef (k; c)! (j; b) g
7: end for

8: end for
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In SolveDTMC, the initial embedded state (i; a) 2 R�D represents a marking, the \i"
part, and discrete-time phase information, the \a" part. Information about continuous-time
phases is omitted since all transitions in TC are disabled. After constructing the absorbing
DTMC, ~� is computed in line 2 using Equation 2.2. Then each nonabsorbing state (k; c), a
marking and DPH phase, is considered in turn with line 4 accumulating the results into each
unique marking k. Lines 5 and 6 accumulate the EMC transition probabilities from (i; a) to
each new embedded state (j; b). The transition probability �(i;a)(j;b) for DTMCs is given by

X
(k;c)

E[ visits to (k; c) until absorption j start in state (i; a) ] � Prf (k; c)! (j; b) g

=
X
(k;c)

�(k;c) � Prf (k; c)! (j; b) g;

which is computed in line 6.
The procedure SolveCTMC is almost identical to SolveDTMC except for a few subtle

di�erences. First, the initial embedded state (i; a) 2 R�D represents a marking, the \i"
part, and continuous-time phase information, the \a" part. Information about discrete-time
phases is omitted since all transitions in TD are disabled. Second, ~� is computed in line 2
using Equation 2.14. And third, the transition probability �(i;a)(j;b) for CTMCs is given by

X
(k;c)

E[ time in (k; c) until absorption j start in state (i; a) ] � ratef (k; c)! (j; b) g

=
X
(k;c)

�(k;c) � ratef (k; c)! (j; b) g;

which uses a \rate" instead of a probability since ~� actually contains the expected time
spent in states instead of the expected visits as in the DTMC case.

Procedures SolveDTMC and SolveCTMC are the easy ones; procedure SolveBoth
is harder when making the same attempt towards eliminating embedded states. The reason,
as discussed in Section 4.2.1, is that the underlying process is now semi-regenerative, unlike
the special cases of a DTMC or CTMC. While realizing the technique referred to earlier as the
\multi-step method", procedure SolveBothmust analyze the interdependent, simultaneous
evolution of a DTMC on the discrete-time phase space and a CTMC, possibly expanded on
the marking and continuous-time phase space. Of course, here the \DTMC" stems from
the combined, possibly marking dependent, discrete-time phase evolution of enabled DPH
transitions, ~T , during the regeneration period. The same notation presented when developing
this procedure in Section 4.2.1 is maintained here for clarity.
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Procedure 4.2.4 General solution procedure when both DTMC and CTMC are active

procedure SolveBoth is

1: Given (i; a) 2 E , let Si be the states reachable from i and construct the associated,
possibly expanded, CTMC with state space Si [Ei and generator matrix Qi.

2: Given TD = ft1; t2; : : : ; tjTDjg, let ~T = F(i)\TD be the set of DPH transitions initially
enabled at the same time in state i.

3: For each t 2 ~T , let Dt(�) 2 R
jDt j�jDtj be the, possibly marking dependent, �ring-delay

speci�cation (a stochastic matrix) de�ned on the phase space Dt, and set the 0th row to
zero, Dt

0(�) 0.
4: Let �t 2 RjD

t j be the individual phase vectors 8 t 2 TD and initialize each so that vector

t�

t corresponds to phase \a".
5: Let � 2 RjSi j be the CTMC probability vector, and initialize, �  1i.
6: Let � 2 RjSi j be the CTMC cumulative probability vector, and initialize, �  0.
7: Let � 2 R

jSi �Daj be the complete state probability vector, which accumulates state
occupancy probabilities when some t 2 ~T can �re, set initially to zero, �  0.

8: while 9 t 2 ~T :



�t





1
> 10�d do : : : for as long as the possibility for ~T �rings exist

9: �  � + �
�R
0
eQiu du accumulate time spent in each CTMC state

10: �  �eQi� CTMC state at this clock step

11: for each t 2 ~T : k�tk1 > 0 do
12: w 0

13: for each k 2 Si do
14: v  �tDt(k) advance phase conditioned on current CTMC state

15: w  w + v �k compute unconditional next-phase vector

16: if v0 > 0 then Can transition t �re?

17: �  � + �k 
  
t1
k 
 

t2
k 
 � � � 
 

tjTD j

k ;

where  t
k =

8<
:v0 if t 2 F(k) ^ v0 > 0

�t otherwise
if yes then build state vector

18: end if

19: end for

20: �t  w new phase after clock increment

21: end for

22: end while

23: �(i;a)  �� + �fEig 
 �
(0) construct EMC row (i; a) by applying switching matrix

24: h(i;a)  � the (i; a) row of the conversion matrix is identical to �

The generator matrix of the expanded CTMC, originating from state i, is denoted by
Qi. During the regeneration interval of interest, the CTMC speci�ed by Qi can change only
as a result of a DPH transition �ring, not by mere phase advancements. Since we process
the DPH transition �rings at the end of the procedure, we are certain that the CTMC is
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the same while advancing the clock in search of DPH transition �ring opportunities, thereby
computing the conditional pmf of T1 marking the start of a new regeneration period.

The probability distribution of CTMC states is stored in the vector � and the cumulative
probabilities in the same state up to the current time step are stored in the vector �. The
phase vector �t for each t 2 TD is initialized so that the Kronecker product will match the
vector identi�ed by \a". Then, the entire probability mass of the DTMC is initially located
in the ath component of the phase vector, and the entire probability mass of the CTMC is
initially located in the ith component of vector �. After the initialization, the procedure
SolveBoth proceeds to e�ectively advance in time from embedded state (i; a), moving the
probability mass around the CTMC and individual DTMCs, while looking for t 2 ~T �ring
opportunities. Unlike the phase vectors for t 2 ~T , which will evolve during the procedure,
the phase vectors of each t 2 TDn ~T will remain the same.

Ignoring the while loop for the moment, lines 9 and 10 solve the CTMC at time � ,
the time of the next clock increment, which can be computed at the same time using the
uniformization algorithm (2.2.1) presented in Chapter 2. By using the vector � itself as the
initial vector in the equations, the transient analysis resumes each time from the previous
observation. Of course, we assume that TD �ring delays are nonzero so that at least one
phase advance is needed, otherwise the transition(s) would be immediate and reside instead
in set TZ . Lines 11-21 then advance the phases of each t 2 ~T based on each CTMC state
occupied at the next clock increment. The conditional next phase is stored in vector v
whereas the unconditional next phase is stored in vector w once all possible CTMC states
have been considered. For each occurrence of the condition v0 > 0, indicating that the �ring
of t 2 ~T at the current clock step is possible, the corresponding state vector is constructed
and stored in vector �. The vector v0 has v0 as the 0th element, and all other elements
are zero. By accumulating such \�ring" state probabilities over all �ring occurrences during
the entire regeneration period, we e�ectively set aside the processing of the �rings until the
end. The state probability mass at each t 2 ~T �ring opportunity is given by the Kronecker
product of CTMC states and DTMC phases that make the �ring possible.

Some comments about the marking-dependent Dt(�) matrix are needed. At the very
least, for each k 2 Si, D

t(k) is de�ned as the identity matrix I when t =2 F(k). In this
way, the phase given by �t is unchanged when t is disabled in the marking associated with
state k. In addition, Dt(k) may also depend on the state (marking) k; the matrix entries,
the matrix structure, or both may be marking dependent. Of course, if we allow the matrix
structure to change, we must at least maintain a consistent phase space to avoid ill-de�ned
models. Most important to the construction of Dt(�), we set the \0 phase" row elements
to zero. Doing this discards the probability mass in each �t0 when line 14 is executed the
next time around. Only the probability mass contained after its use in the other Dt(�)
states is retained when the clock is incremented to search for other �ring opportunities in
the future time horizon. Hence, the probability mass contained within each Dt(�) diminishes
over time; once the mass in all diminishes below the desired precision (d decimal places),
there is no practical need to search for any further �rings, and the while loop can exit.
Until then, the procedure repeats. After exiting the while loop, the vector � will have a
row sum practically equal to one, within the precision 10�d. Then, � can be multiplied with
the switching matrix � to compute the embedded states reached from state (i; a). If total
disablement or resetting of the transitions in ~T is possible during the regeneration period,
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the vector �fEig, consisting of (absorbing state) entries �k if k 2 Ei and zero otherwise, will
contain the (trapped) probability of such events, and thus the probability of entering the
additional set of embedded states Ei. The phase vector �(0) denotes the new, resampled
phases of transitions enabled in the set of embedded states Ei. Row (i; a) of the conversion
matrix is identical to the vector �.

For regeneration periods where

1. ~T consists of transitions with only resampling or enabling memory policies and

2. the Dt matrix for each t 2 ~T is not marking dependent,

we can be more eÆcient. In such situations, the DTMC is �xed and we do not need to
remember the phase of age-memory transitions at the previous clock increment just in case
it becomes disabled before the next. By the construction that ensures a semi-regenerative
process, if some t 2 ~T is enabled in state k at precisely time � then it must have been
enabled over the entire interval leading up to �. This convenience allows us to advance the
clock forward by more than one increment in time until a �ring opportunity presents itself.
Then the CTMC can be solved at this larger time interval, followed by the construction of
the \�ring" state probability vectors. The enhanced version of the SolveBoth procedure
is presented as Procedure 4.2.5.

After setting the variable � to zero in line 9, the repeat loop searches for �ring opportu-
nities while incrementing the clock one � step at a time (lines 10 through 15) while the time
is kept in �. Again, we assume that TD �ring delays are nonzero so that at least one phase
advance is needed. The repeat loop exits when the �ring of at least one t 2 ~T is possible,
and consequently, � will contain the largest forward-step in time when the embedded process
can be observed without the possibility of missing a DPH transition �ring. The CTMC is
then advanced ahead to this time � and the expected sojourn times in CTMC states are
computed over this same interval from the last probability distribution of state occupancy
(lines 16 and 17). The state probability vector � is constructed in lines 18-20 as before
except that the phases of disabled transitions in ~T are set to \�", as expected by de�nition.
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Procedure 4.2.5 Enhanced solution procedure when both DTMC and CTMC are active
and age DPH transitions are not enabled.

procedure EnhancedSolveBoth is

1: Given (i; a) 2 E , let Si be the states reachable from i and construct the associated,
possibly expanded, CTMC with state space Si [Ei and generator matrix Qi.

2: Given TD = ft1; t2; : : : ; tjTDjg, let
~T = F(i)\TD be the set of DPH transitions initially

enabled at the same time in state i.
3: For each t 2 ~T , let Dt 2 RjD

t j�jDtj be the �ring-delay speci�cation (a stochastic matrix)
de�ned on the phase space Dt, and set the 0th row to zero, Dt

0  0.
4: Let �t 2 RjD

t j be the individual phase vectors 8 t 2 TD and initialize each so that vector

t�

t (with 1� used instead for t 2 TDn ~T ) and phase \a" are one in the same.
5: Let � 2 RjSi j be the CTMC probability vector, and initialize, �  1i.
6: Let � 2 RjSi j be the CTMC cumulative probability vector, and initialize, �  0.
7: Let � 2 R

jSi �Daj be the complete state probability vector, which accumulates state
occupancy probabilities when some t 2 ~T can �re, set initially to zero, �  0.

8: while 9 t 2 ~T :



�t





1
> 10�d do : : : for as long as the possibility for ~T �rings exist

9: �  0
10: repeat advance the clock to the next ~T �ring opportunity

11: for each t 2 ~T : k�tk1 > 0 do
12: �t  �tDt

13: end for

14: �  � + �
15: until 9 t 2 ~T : �t0 > 0 phase = 0 indicates that transition t can �re

16: �  � + �
�R
0
eQiu du accumulate time spent in each CTMC state

17: �  �eQi� CTMC state at this clock step

18: for each k 2 Si do

19: �  � + �k 
  
t1
k 
  

t2
k 
 � � � 
 

tjTD j

k ; state vector associated with �ring

where  t
k =

8>><
>>:
�t if t =2 ~T

�t
0 if t 2 F(k)\ ~T ^ �t0 > 0

1� otherwise
20: end for

21: end while

22: �(i;a)  �� + �fEig 
 �
(0) construct EMC row (i; a) by applying switching matrix

23: h(i;a)  � the (i; a) row of the conversion matrix is identical to �
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4.3 Complexity Analysis

The previous classi�cation of the PDPNs with certain simplifying assumptions and the for-
mulation of time-dependent state equations allows us to assess the power-complexity trade-o�
between these PDPN classes and how they compare with other SPN extensions. Figure 4.14
shows a plot that roughly estimates the modeling power versus solution complexity for each
of the SPN classes. On the two extremes, we have the untimed PN, which is not accompanied
by a stochastic process and therefore has the least power but is easiest to solve (in terms of
qualitative analysis), and the general SPN, which has the most power but is the hardest to
solve (in terms of quantitative analysis). Although the DTMC and CTMC based SPNs have
the same modeling power, the DTMC-SPN is considered a little more diÆcult to solve due
to the contemporary transition �rings; hence, it is sitting above the CTMC-SPN. The same
reasoning was applied to the DDSPN and PH-SPN.

From the plot, we can see that progress is being made towards achieving more modeling
power but at the cost of additional solution complexity. It is hoped that the approximate
solutions discovered by this research e�ort will allow the general (asynchronous) class of
PDPN to be reasonably powerful and accurate with much less e�ort than the most general
SPN.
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Figure 4.14: Performance comparison.
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Returning to our stationary solution algorithm, we should be curious about its com-
putation time, in particular, the convergence of line 15 of Algorithm 4.2.1 and line 2 of
procedures SolveDTMC and SolveCTMC using iterative methods. Although the use of
iterative methods like Gauss-Seidel and SOR to compute line 15 of Algorithm 4.2.1 does not
guarantee convergence for all initial guesses, convergence can be guaranteed for line 2 of both
SolveDTMC and SolveCTMC, since both � ~Q and (I� ~�) are M-matrices. Because the
SMC solutions, at least, enjoy bounded computation, this new stationary PDPN algorithm
may be no worse, relatively speaking, than the algorithms proposed in the literature, e.g.,
[11, 46], for DSPNs and MRSPNs. However, just how much computation is really involved
is another matter since it depends on the number of iterations needed to achieve the desired
accuracy. We do have the advantage that we expect the size of (I� ~�) and ~Q to be small
since they are constructed from the combination of absorbing DTMCs and CTMCs, respec-
tively, which themselves will usually be small. If the matrices are small enough, we could
even employ direct methods such as Gaussian elimination or LU decomposition to solve for
~�.

Similarly for the procedures SolveBoth and EnhancedSolveBoth, the number of
while loop iterations required to achieve the desired accuracy depends on the PDPN model,
the type of DPH transitions, and each particular regeneration period. Many iterations may
be necessary if the DPH speci�cations are such that the probability mass tends to occupy
sel
oops and circuits within the DTMC. Nevertheless, the while loop will exit since the
probability mass will ultimately drain from each Dt matrix, t 2 ~T . Actually, the residual
probability mass goes to zero like !k as the number of loop iterations, k, increases, where
! = maxt2 ~T (!

t
1) < 1 and !t

1 is the largest eigenvalue, or spectral radius, of matrix Dt. The
reason is two-fold. One, making the \0 phase" row entries of each Dt matrix identically zero
ensures that the spectral radius of each Dt matrix is less than one. Without the zero row,
each Dt matrix would be stochastic and therefore have a spectral radius of one. Making one
of the rows identically zero reduces the largest eigenvalue to zero, which would otherwise
equal one, thereby making the second-largest eigenvalue, which is less than one, the largest.
Two, for iterative methods such as this (essentially the power method), the convergence rate
is proportional to the largest eigenvalue of the iteration matrix. More will be said about this
momentarily.

The number of iterations can always be shortened by exiting the while loop early,
however, doing so will increase the number of states and transitions within the EMC that only
represent \delay" information. The additional EMC states may also worsen the convergence
rate of the iterative method used to compute its stationary solution. Clearly, a heuristic is
needed to �nd an acceptable trade-o� between computation time and space.

We now conclude this section (and chapter) with a rough analysis that considers the
trade-o� of complexity between the EMC and SMC solutions. For the solution of Ax = b in
general, or (I��)x = 0 in particular, an iterative method like Gauss-Seidel or SOR takes
an initial guess, x(0), for the exact solution, x, and generates a sequence of vectors fx(k)g1k=1

that, hopefully, converges to x as k !1. The intent of an iterative method is to transform
the original system of equations Ax = b to an equivalent system x = Bx+ c that not only
produces a sequence fx(k)g1k=1 that converges to the exact solution, x, but also makes the
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spectral radius, �, of B and the spectral radius, �0, of A satisfy

� < �0 � 1:

The technique is guaranteed to converge for any initial guess if � < 1, however convergence
is not guaranteed for all guesses when � = 1 [16]. The error between x(k) and x goes to zero
like �k as k increases. For a desired precision of 10�d, the rate of convergence is then de�ned
as �d=log �: Any reduction of the spectral radius, �, by a fraction, x, will improve the rate
of convergence by an additive amount log(1� x) in the denominator.

With this knowledge, we approach the analysis with the following reasoning. Let us
suppose that if the embedded process was observed at the most frequent opportunities,
i.e., the \single-step" embedding method is used as discussed in Section 4.2.1, then the EMC
matrix� would contain � entries. For regeneration periods where procedures SolveDTMC

or SolveCTMC are used, the SMC is identical to the EMC, each containing a fraction, y,
of the total� matrix entries, and a much simpler SMC analysis is traded for an anticipated,
simpler EMC analysis. That is, if the \single-step" method was used instead, the (single
state) SMC solution for each entry in � would require O(1) time, due to the closed-form
expressions, but y� such solutions would be required. With SolveDTMC or SolveCTMC,
we study the SMC as a TTA problem, one time, and the time complexity is O(y�K) if it
requires K iterations. The reduction of (1 � y)� entries in the matrix � not only reduces
the per iteration cost by the same amount but should also improve the rate of convergence
by reducing the spectral radius of the iteration matrix derived from �, as observed in
[43]. We have a similar trade-o� for regeneration periods when procedure SolveBoth, or
EnhancedSolveBoth, is used, except that the trade is between having (1�y)� less entries
in� and having to perform the power method on essentially a DTMC matrix 
t2 ~TD

t that
has, perhaps, O(y�) entries. The SMC and generator matrix is the same whether employing
the \multi-step" method of SolveBoth or, instead, the \single-step" method.

Assume that a simple SMC solution results in the worse-case EMC complexity of �
matrix entries and requires

K1 =
�d

log �1

iterations where �1 is the spectral radius of the iteration matrix. The time complexity of
computing the EMC stationary solution is therefore O(�K1). With our approach, a more
complex SMC solution that reduces �1 by a fraction x and reduces � by a fraction y would
yield a reduced time complexity of O((1� y)�K2) for the EMC solution where

K2 =
�d

log ((1� x)�1)

but should typically require an additional e�ort of O(y�K3) in solving the SMC due to the
K3 iterations required of the more complex SMC solution with y� matrix entries. Hence,
the net reduced e�ort is given by

1�

 
(1� y)�K2 + y�K3

�K1

!
:
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Substituting

K2

K1
=
�d= log((1� x)�1)

�d= log �1
=

log �1
log(1� x) + log �1

and, similarly

K3

K1
=

log �1
log �2

where �2 is the spectral radius of the SMC matrix, we get a reduced e�ort of

r(x; y; �1; �2) = 1� log �1

 
1� y

log(1� x) + log �1
+

y

log �2

!
:

The net reduced e�ort, r, is plotted in Figure 4.15 for �1 = �2 = 0:9. From the plot, we
can see that the overall complexity is reduced for nonzero reductions in �1 and for values
of y less than unity. The plot shows that the solution algorithm may enjoy signi�cant cost
savings for even the smallest x reduction in �1 as long as y is reasonably small too. This is
also true for other, equal values of �1 and �2 that are large, which is typically the case. As
shown in Figure 4.16 for �1 = �2 = 0:2, the cost savings is less dramatic as the spectral radii
become small. This is expected since the iterative methods would converge quickly for small
spectral radii; therefore, moving the e�ort from the EMC to the SMC, via the elimination
of embedded states, would have less impact on performance.

Our predictions indicate that a non-negative cost savings can be realized for all values
of x, y, �1, and �2 when �1 � �2. As �1 becomes larger than �2, the potential cost savings
becomes even more dramatic. For example, Figure 4.17 shows the savings when �1 = 0:9
and �2 = 0:8, which is similar to Figure 4.15 except the savings levels o� at 50 percent as y
approaches unity, as opposed to 0 percent.

It seems that \embedding with elimination" will always improve performance. Unfor-
tunately, this is not the case. At the risk of ending on a bad note, let us consider when
�1 < �2. This would mean that the EMC solution would most likely enjoy better perfor-
mance than the SMC solutions when left alone. Moving some of the complexity from the
EMC to the SMC has the potential of worsening the overall performance if the degradation
in the SMC solution performance is not o�set by even better EMC solution performance. As
an example, Figure 4.18 shows the cost savings when �1 = 0:8 and �2 = 0:9. Although cost
savings can still be realized, there is now the possibility of making matters worse, perhaps
even 100 percent worse if too much complexity (the y fraction) is moved to the SMC. Clearly,
a heuristic is needed to work with the \embedding with elimination" algorithm to ensure
that an acceptable trade-o� between the EMC solution and the many SMC solutions can be
realized in most problem cases.
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4.4 Summary of Current Accomplishments

We have shown that SPNs are easily solved when �ring delays of transitions are either expo-
nentially or geometrically distributed. These models have an underlying CTMC or DTMC,
respectively, for which eÆcient solution techniques are available. However, such modeling
assumptions by themselves may be unrealistic for many systems, leading to inaccurate re-
sults when adopted. In their full generality, SPNs specify generalized semi-Markov processes
whose numerical analysis is impractical. The goal of our research is to improve SPN model-
ing �delity in a way that preserves, as much as possible, the solution eÆciencies enjoyed by
CTMC and DTMC models.

Our approach has led to the formal development of a new class of non-Markovian SPN
employing phase-type �ring delays in both discrete and continuous time. We refer to this
new SPN class as a phased delay Petri net or PDPN, and to our knowledge, this is the �rst
time discrete and continuous phase-type �ring delays have been combined simultaneously in
the same model. With phase-type �ring delays, the notion of state is composed of the net
marking and the discretized, �ring-delay phases of enabled transitions.

Our investigations into the characteristics and analysis of the PDPN has led to the
identi�cation of PDPN subclasses that a�ord di�erent combinations of modeling power and
solution complexity. In decreasing generality, these subclasses are identi�ed as asynchronous,
mixed, synchronous, and isochronous. The essential di�erence between the unrestricted asyn-
chronous PDNP and the latter three subclasses is that the phase advancements of discrete
phase transitions maintain synchronization in the latter subclasses. Maintaining synchro-
nization among discrete phase transitions results in an underlying semi-regenerative process
and is key to the existence and discovery of eÆcient solution algorithms. With the aid
of Markov renewal theory, we can decompose a semi-regenerative process into interacting
CTMCs and DTMCs, each of which can be solved eÆciently, and the intermediate results
can be combined to obtain the solution to the original, more complex problem. Full un-
derstanding of these subclasses should help us �nd eÆcient algorithms for their exact or
approximate solutions, as appropriate, culminating into a set of solution methods. Given
a particular modeling application, the solution engine may then classify the type of PDPN
and employ a capable-enough solution algorithm having the least amount of complexity.

To this end, our preliminary investigation has produced eÆcient algorithms for the exact
stationary solution of all PDPN subclasses except for the asynchronous PDPN, and the
exact transient solution of the isochronous PDPN. Compared to similar stationary solution
algorithms for DSPNs and MRSPNs, our stationary solution algorithm is new in that it
proposes an \embedding with elimination" approach, which attempts to reduce the size
of the embedded state space and the number of state transitions that update the phase
information without actually �ring a transition.

A complete \embedding with elimination" algorithm and theoretical complexity analysis
was presented. Our stationary algorithm shows much promise when there exists opportu-
nities to reduce the embedded state space. Our theoretical investigation has also provided
evidence that approximate solution algorithms are more needed for transient analysis than
for stationary analysis and may be the only practical means, other than simulation, to-
wards solving asynchronous PDPNs. The investigation and development of such solution
algorithms is the focus of our future research.
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Chapter 5

Future Work

Through our preliminary research, we have begun to understand the PDPN well enough
to formalize its de�nition, semantics, and underlying stochastic process. Towards this un-
derstanding, we have determined that the general class of problem, which we call an asyn-
chronous PDPN, also has three useful subclasses denoted by the adjectives isochronous,
synchronous, and mixed (having both synchronous and asynchronous characteristics). Re-
stricting PDPN models to one of these three subclasses, ensures that the underlying process
is semi-regenerative. As such, we can employ Markov renewal theory in an attempt to �nd
eÆcient solutions, either stationary or time dependent.

Our preliminary research has allowed us to acquire an understanding of Markov renewal
theory and to apply it to PDPN models. Consequently, we now have an initial stationary
solution algorithm that shows promise in terms of eÆciency and �delity.

Markov renewal theory has also shown us how diÆcult it is to obtain time-dependent
solutions. So other than the exact solution algorithm given here for the isochronous PDPN,
we will seek approximate solution algorithms that o�er higher eÆciency and reasonable
accuracy.

The plan towards completing our proposed research and development is as follows:

� Improve our proposed stationary solution algorithm, to investigate heuristics that select
the best embedding strategy based on each particular PDPN model. Further extensions
to the uniformization algorithm may also be needed.

� Investigate and develop approximate solution algorithms for time-dependent solutions
that are both eÆcient and reasonably accurate, preferably with upper and lower
bounds. Again, heuristics will be sought to ensure good performance for most PDPN
models that one would typically encounter.

� We also plan to investigate the �delity of the developed PDPN modeling approach
to other contemporary approaches including simulation while applying our results to
relevant applications. Such comparisons with other approaches will also include what
impact the choice of PH or DPH, continuous or discrete time, has on solution accuracy
with respect to solution complexity.

� Finally, all PDPN analysis algorithms and data structures will be implemented into
the software tool SMART (Simulation and Markovian Analyzer for Reliability and
Timing) under development at the College of William & Mary.
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